4.28.33 \(x y''(x)-(x+3) y'(x)+3 y(x)=0\)

ODE
\[ x y''(x)-(x+3) y'(x)+3 y(x)=0 \] ODE Classification

[_Laguerre]

Book solution method
TO DO

Mathematica
cpu = 0.016726 (sec), leaf count = 29

\[\left \{\left \{y(x)\to c_1 e^x-c_2 \left (x^3+3 x^2+6 x+6\right )\right \}\right \}\]

Maple
cpu = 0.043 (sec), leaf count = 24

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{x}}+{\it \_C2}\, \left ( {x}^{3}+3\,{x}^{2}+6\,x+6 \right ) \right \} \] Mathematica raw input

DSolve[3*y[x] - (3 + x)*y'[x] + x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^x*C[1] - (6 + 6*x + 3*x^2 + x^3)*C[2]}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)-(3+x)*diff(y(x),x)+3*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*exp(x)+_C2*(x^3+3*x^2+6*x+6)