4.3.40 y(x)=Csx(x)y(x)sec(x)+sec2(x)

ODE
y(x)=Csx(x)y(x)sec(x)+sec2(x) ODE Classification

[_linear]

Book solution method
Linear ODE

Mathematica
cpu = 2.76097 (sec), leaf count = 54

{{y(x)e1xCsx(K[1])sec(K[1])dK[1](1xsec2(K[2])e1K[2]Csx(K[1])sec(K[1])dK[1]dK[2]+c1)}}

Maple
cpu = 0.111 (sec), leaf count = 41

{y(x)=(21cos(2x)+1eCsx(x)cos(x)dxdx+_C1)eCsx(x)cos(x)dx} Mathematica raw input

DSolve[y'[x] == Sec[x]^2 + Csx[x]*Sec[x]*y[x],y[x],x]

Mathematica raw output

{{y[x] -> E^Integrate[Csx[K[1]]*Sec[K[1]], {K[1], 1, x}]*(C[1] + Integrate[Sec[K
[2]]^2/E^Integrate[Csx[K[1]]*Sec[K[1]], {K[1], 1, K[2]}], {K[2], 1, x}])}}

Maple raw input

dsolve(diff(y(x),x) = sec(x)^2+y(x)*sec(x)*Csx(x), y(x),'implicit')

Maple raw output

y(x) = (Int(2/(cos(2*x)+1)*exp(-Int(Csx(x)/cos(x),x)),x)+_C1)*exp(Int(Csx(x)/cos
(x),x))