4.3.41 2y(x)+2csc2(x)=y(x)csc(x)sec(x)y(x)2sec2(x)

ODE
2y(x)+2csc2(x)=y(x)csc(x)sec(x)y(x)2sec2(x) ODE Classification

[_Riccati]

Book solution method
Riccati ODE, Generalized ODE

Mathematica
cpu = 0.476711 (sec), leaf count = 48

{{y(x)cot(x)(c1cos(x)+2sin2(x)4)c1cos(x)+sin2(x)4}}

Maple
cpu = 0.09 (sec), leaf count = 107

{(csc(x)sec(x)+2cot(x)+2tan(x))y(x)2(csc(x))2(csc(x)sec(x)+2cot(x)+2tan(x))2(2(_a2_a/2+1/2)(sec(x))2(csc(x))24sec(x)(cot(x)+tan(x))(_a1)csc(x)4(cot(x)+tan(x))2(_a1))1d_a+ln(tan(x))2+ln(sin(x))ln(cos(x))+_C1=0} Mathematica raw input

DSolve[2*Csc[x]^2 + 2*y'[x] == Csc[x]*Sec[x]*y[x] - Sec[x]^2*y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> (Cot[x]*(C[1]*Sqrt[Cos[x]] + 2*(Sin[x]^2)^(1/4)))/(C[1]*Sqrt[Cos[x]] +
 (Sin[x]^2)^(1/4))}}

Maple raw input

dsolve(2*diff(y(x),x)+2*csc(x)^2 = y(x)*csc(x)*sec(x)-y(x)^2*sec(x)^2, y(x),'implicit')

Maple raw output

Intat((csc(x)*sec(x)+2*cot(x)+2*tan(x))^2/(2*(_a^2-1/2*_a+1/2)*sec(x)^2*csc(x)^2
-4*sec(x)*(cot(x)+tan(x))*(_a-1)*csc(x)-4*(cot(x)+tan(x))^2*(_a-1)),_a = 1/2/csc
(x)^2*(csc(x)*sec(x)+2*cot(x)+2*tan(x))*y(x))+1/2*ln(tan(x))+ln(sin(x))-ln(cos(x
))+_C1 = 0