4.30.23 \(x^2 y''(x)-3 x y'(x)-5 y(x)=0\)

ODE
\[ x^2 y''(x)-3 x y'(x)-5 y(x)=0 \] ODE Classification

[[_2nd_order, _exact, _linear, _homogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.014432 (sec), leaf count = 18

\[\left \{\left \{y(x)\to \frac {c_1 x^6+c_2}{x}\right \}\right \}\]

Maple
cpu = 0.009 (sec), leaf count = 15

\[ \left \{ y \left ( x \right ) ={\frac {{\it \_C1}\,{x}^{6}+{\it \_C2}}{x}} \right \} \] Mathematica raw input

DSolve[-5*y[x] - 3*x*y'[x] + x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (x^6*C[1] + C[2])/x}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)-5*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = (_C1*x^6+_C2)/x