4.30.24 \(x^2 y''(x)-3 x y'(x)-5 y(x)=x^2 \log (x)\)

ODE
\[ x^2 y''(x)-3 x y'(x)-5 y(x)=x^2 \log (x) \] ODE Classification

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.0196094 (sec), leaf count = 27

\[\left \{\left \{y(x)\to c_1 x^5+\frac {c_2}{x}-\frac {1}{9} x^2 \log (x)\right \}\right \}\]

Maple
cpu = 0.016 (sec), leaf count = 22

\[ \left \{ y \left ( x \right ) ={x}^{5}{\it \_C2}+{\frac {{\it \_C1}}{x}}-{\frac {{x}^{2}\ln \left ( x \right ) }{9}} \right \} \] Mathematica raw input

DSolve[-5*y[x] - 3*x*y'[x] + x^2*y''[x] == x^2*Log[x],y[x],x]

Mathematica raw output

{{y[x] -> x^5*C[1] + C[2]/x - (x^2*Log[x])/9}}

Maple raw input

dsolve(x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)-5*y(x) = x^2*ln(x), y(x),'implicit')

Maple raw output

y(x) = x^5*_C2+1/x*_C1-1/9*x^2*ln(x)