4.32.48 \(\left (x^2+3 x+4\right ) y''(x)+\left (x^2+x+1\right ) y'(x)-(2 x+3) y(x)=0\)

ODE
\[ \left (x^2+3 x+4\right ) y''(x)+\left (x^2+x+1\right ) y'(x)-(2 x+3) y(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0566449 (sec), leaf count = 23

\[\left \{\left \{y(x)\to c_2 \left (x^2+x+3\right )+c_1 e^{-x}\right \}\right \}\]

Maple
cpu = 0.044 (sec), leaf count = 19

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-x}}+{\it \_C2}\, \left ( {x}^{2}+x+3 \right ) \right \} \] Mathematica raw input

DSolve[-((3 + 2*x)*y[x]) + (1 + x + x^2)*y'[x] + (4 + 3*x + x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[1]/E^x + (3 + x + x^2)*C[2]}}

Maple raw input

dsolve((x^2+3*x+4)*diff(diff(y(x),x),x)+(x^2+x+1)*diff(y(x),x)-(3+2*x)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*exp(-x)+_C2*(x^2+x+3)