4.32.49 \((x+2)^2 y''(x)-(x+2) y'(x)+2 y(x)=0\)

ODE
\[ (x+2)^2 y''(x)-(x+2) y'(x)+2 y(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0228534 (sec), leaf count = 26

\[\left \{\left \{y(x)\to (x+2) \left (c_1 \sin (\log (x+2))+c_2 \cos (\log (x+2))\right )\right \}\right \}\]

Maple
cpu = 0.006 (sec), leaf count = 23

\[ \left \{ y \left ( x \right ) = \left ( 2+x \right ) \left ( {\it \_C1}\,\sin \left ( \ln \left ( 2+x \right ) \right ) +{\it \_C2}\,\cos \left ( \ln \left ( 2+x \right ) \right ) \right ) \right \} \] Mathematica raw input

DSolve[2*y[x] - (2 + x)*y'[x] + (2 + x)^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (2 + x)*(C[2]*Cos[Log[2 + x]] + C[1]*Sin[Log[2 + x]])}}

Maple raw input

dsolve((2+x)^2*diff(diff(y(x),x),x)-(2+x)*diff(y(x),x)+2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = (2+x)*(_C1*sin(ln(2+x))+_C2*cos(ln(2+x)))