4.33.35 \(\left (a+x^4+2 x^2\right ) y(x)+4 x^3 y'(x)+4 x^2 y''(x)=0\)

ODE
\[ \left (a+x^4+2 x^2\right ) y(x)+4 x^3 y'(x)+4 x^2 y''(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0576426 (sec), leaf count = 70

\[\left \{\left \{y(x)\to \frac {e^{-\frac {x^2}{4}} x^{\frac {1}{2}-\frac {\sqrt {1-a}}{2}} \left (c_2 x^{\sqrt {1-a}}+\sqrt {1-a} c_1\right )}{\sqrt {1-a}}\right \}\right \}\]

Maple
cpu = 0.069 (sec), leaf count = 42

\[ \left \{ y \left ( x \right ) ={{\rm e}^{-{\frac {{x}^{2}}{4}}}} \left ( {x}^{{\frac {1}{2}}-{\frac {1}{2}\sqrt {1-a}}}{\it \_C2}+{x}^{{\frac {1}{2}}+{\frac {1}{2}\sqrt {1-a}}}{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[(a + 2*x^2 + x^4)*y[x] + 4*x^3*y'[x] + 4*x^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (x^(1/2 - Sqrt[1 - a]/2)*(Sqrt[1 - a]*C[1] + x^Sqrt[1 - a]*C[2]))/(Sqr
t[1 - a]*E^(x^2/4))}}

Maple raw input

dsolve(4*x^2*diff(diff(y(x),x),x)+4*x^3*diff(y(x),x)+(x^4+2*x^2+a)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(-1/4*x^2)*(x^(1/2-1/2*(1-a)^(1/2))*_C2+x^(1/2+1/2*(1-a)^(1/2))*_C1)