4.33.36 \(4 \left (1-x^2\right ) y''(x)-8 x y'(x)-y(x)=0\)

ODE
\[ 4 \left (1-x^2\right ) y''(x)-8 x y'(x)-y(x)=0 \] ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0117691 (sec), leaf count = 31

\[\left \{\left \{y(x)\to \frac {2 c_1 K\left (\frac {1-x}{2}\right )}{\pi }+c_2 Q_{-\frac {1}{2}}(x)\right \}\right \}\]

Maple
cpu = 0.041 (sec), leaf count = 15

\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{\it LegendreP} \left ( -{\frac {1}{2}},x \right ) +{\it \_C2}\,{\it LegendreQ} \left ( -{\frac {1}{2}},x \right ) \right \} \] Mathematica raw input

DSolve[-y[x] - 8*x*y'[x] + 4*(1 - x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (2*C[1]*EllipticK[(1 - x)/2])/Pi + C[2]*LegendreQ[-1/2, x]}}

Maple raw input

dsolve(4*(-x^2+1)*diff(diff(y(x),x),x)-8*x*diff(y(x),x)-y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*LegendreP(-1/2,x)+_C2*LegendreQ(-1/2,x)