4.34.6 y(x)(a0+b0x+c0x2)+(a1+b1x)y(x)+2a2y(x)=0

ODE
y(x)(a0+b0x+c0x2)+(a1+b1x)y(x)+2a2y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 16.2114 (sec), leaf count = 0 , DifferentialRoot result

\left \{\left \{y(x)\to \text {DifferentialRoot}\left (\{\unicode {f818},\unicode {f817}\}\unicode {f4a1}\left \{2 \text {a2} \unicode {f818}(\unicode {f817})+(\text {a1}+\unicode {f817} \text {b1}) \unicode {f818}'(\unicode {f817})+\left (\text {c0} \unicode {f817}^2+\text {b0} \unicode {f817}+\text {a0}\right ) \unicode {f818}''(\unicode {f817})=0,\unicode {f818}(0)=c_1,\unicode {f818}'(0)=c_2\right \}\right )(x)\right \}\right \}

Maple
cpu = 0.245 (sec), leaf count = 507

{y(x)=_C12F1(12c0(c0+b1+c02+(8a22b1)c0+b12),12c0(c0b1+c02+(8a22b1)c0+b12);12c02(b14a0c0+b02c02c02c0a1+b1b0)14a0c0+b02c02;18a0c02b02(24a0c0+b02c02xc024a0c0+b02c02b0c0+4a0c0b02))+_C2(24a0c0+b02c02xc02+4a0c0+b02c02b0c04a0c0+b02)1c02(c0(b12c0)24a0c0+b02c02+c0a1b1b02)14a0c0+b02c022F1(1c02(c02(c0c02+(8a22b1)c0+b12)4a0c0+b02c02+c0a1b1b02)14a0c0+b02c02,1c02(c02(c0+c02+(8a22b1)c0+b12)4a0c0+b02c02+c0a1b1b02)14a0c0+b02c02;1c02(c0(b14c0)24a0c0+b02c02+c0a1b1b02)14a0c0+b02c02;18a0c02b02(24a0c0+b02c02xc024a0c0+b02c02b0c0+4a0c0b02))} Mathematica raw input

DSolve[2*a2*y[x] + (a1 + b1*x)*y'[x] + (a0 + b0*x + c0*x^2)*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> DifferentialRoot[Function[{\[FormalY], \[FormalX]}, {2*a2*\[FormalY][\
[FormalX]] + (a1 + \[FormalX]*b1)*Derivative[1][\[FormalY]][\[FormalX]] + (a0 + 
\[FormalX]*b0 + \[FormalX]^2*c0)*Derivative[2][\[FormalY]][\[FormalX]] == 0, \[F
ormalY][0] == C[1], Derivative[1][\[FormalY]][0] == C[2]}]][x]}}

Maple raw input

dsolve((c0*x^2+b0*x+a0)*diff(diff(y(x),x),x)+(b1*x+a1)*diff(y(x),x)+2*a2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*hypergeom([1/2/c0*(-c0+b1+(c0^2+(-8*a2-2*b1)*c0+b1^2)^(1/2)), -1/2/c0
*(c0-b1+(c0^2+(-8*a2-2*b1)*c0+b1^2)^(1/2))],[1/2*(b1*((-4*a0*c0+b0^2)/c0^2)^(1/2
)*c0-2*c0*a1+b1*b0)/c0^2/((-4*a0*c0+b0^2)/c0^2)^(1/2)],(-2*((-4*a0*c0+b0^2)/c0^2
)^(1/2)*x*c0^2-((-4*a0*c0+b0^2)/c0^2)^(1/2)*b0*c0+4*a0*c0-b0^2)/(8*a0*c0-2*b0^2)
)+_C2*(2*((-4*a0*c0+b0^2)/c0^2)^(1/2)*x*c0^2+((-4*a0*c0+b0^2)/c0^2)^(1/2)*b0*c0-
4*a0*c0+b0^2)^(1/((-4*a0*c0+b0^2)/c0^2)^(1/2)*(-1/2*c0*(b1-2*c0)*((-4*a0*c0+b0^2
)/c0^2)^(1/2)+c0*a1-1/2*b1*b0)/c0^2)*hypergeom([(1/2*c0*(c0-(c0^2+(-8*a2-2*b1)*c
0+b1^2)^(1/2))*((-4*a0*c0+b0^2)/c0^2)^(1/2)+c0*a1-1/2*b1*b0)/((-4*a0*c0+b0^2)/c0
^2)^(1/2)/c0^2, (1/2*c0*(c0+(c0^2+(-8*a2-2*b1)*c0+b1^2)^(1/2))*((-4*a0*c0+b0^2)/
c0^2)^(1/2)+c0*a1-1/2*b1*b0)/((-4*a0*c0+b0^2)/c0^2)^(1/2)/c0^2],[1/((-4*a0*c0+b0
^2)/c0^2)^(1/2)*(-1/2*c0*(b1-4*c0)*((-4*a0*c0+b0^2)/c0^2)^(1/2)+c0*a1-1/2*b1*b0)
/c0^2],(-2*((-4*a0*c0+b0^2)/c0^2)^(1/2)*x*c0^2-((-4*a0*c0+b0^2)/c0^2)^(1/2)*b0*c
0+4*a0*c0-b0^2)/(8*a0*c0-2*b0^2))