[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✗
cpu = 16.2114 (sec), leaf count = 0 , DifferentialRoot result
Maple ✓
cpu = 0.245 (sec), leaf count = 507
DSolve[2*a2*y[x] + (a1 + b1*x)*y'[x] + (a0 + b0*x + c0*x^2)*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> DifferentialRoot[Function[{\[FormalY], \[FormalX]}, {2*a2*\[FormalY][\
[FormalX]] + (a1 + \[FormalX]*b1)*Derivative[1][\[FormalY]][\[FormalX]] + (a0 +
\[FormalX]*b0 + \[FormalX]^2*c0)*Derivative[2][\[FormalY]][\[FormalX]] == 0, \[F
ormalY][0] == C[1], Derivative[1][\[FormalY]][0] == C[2]}]][x]}}
Maple raw input
dsolve((c0*x^2+b0*x+a0)*diff(diff(y(x),x),x)+(b1*x+a1)*diff(y(x),x)+2*a2*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*hypergeom([1/2/c0*(-c0+b1+(c0^2+(-8*a2-2*b1)*c0+b1^2)^(1/2)), -1/2/c0
*(c0-b1+(c0^2+(-8*a2-2*b1)*c0+b1^2)^(1/2))],[1/2*(b1*((-4*a0*c0+b0^2)/c0^2)^(1/2
)*c0-2*c0*a1+b1*b0)/c0^2/((-4*a0*c0+b0^2)/c0^2)^(1/2)],(-2*((-4*a0*c0+b0^2)/c0^2
)^(1/2)*x*c0^2-((-4*a0*c0+b0^2)/c0^2)^(1/2)*b0*c0+4*a0*c0-b0^2)/(8*a0*c0-2*b0^2)
)+_C2*(2*((-4*a0*c0+b0^2)/c0^2)^(1/2)*x*c0^2+((-4*a0*c0+b0^2)/c0^2)^(1/2)*b0*c0-
4*a0*c0+b0^2)^(1/((-4*a0*c0+b0^2)/c0^2)^(1/2)*(-1/2*c0*(b1-2*c0)*((-4*a0*c0+b0^2
)/c0^2)^(1/2)+c0*a1-1/2*b1*b0)/c0^2)*hypergeom([(1/2*c0*(c0-(c0^2+(-8*a2-2*b1)*c
0+b1^2)^(1/2))*((-4*a0*c0+b0^2)/c0^2)^(1/2)+c0*a1-1/2*b1*b0)/((-4*a0*c0+b0^2)/c0
^2)^(1/2)/c0^2, (1/2*c0*(c0+(c0^2+(-8*a2-2*b1)*c0+b1^2)^(1/2))*((-4*a0*c0+b0^2)/
c0^2)^(1/2)+c0*a1-1/2*b1*b0)/((-4*a0*c0+b0^2)/c0^2)^(1/2)/c0^2],[1/((-4*a0*c0+b0
^2)/c0^2)^(1/2)*(-1/2*c0*(b1-4*c0)*((-4*a0*c0+b0^2)/c0^2)^(1/2)+c0*a1-1/2*b1*b0)
/c0^2],(-2*((-4*a0*c0+b0^2)/c0^2)^(1/2)*x*c0^2-((-4*a0*c0+b0^2)/c0^2)^(1/2)*b0*c
0+4*a0*c0-b0^2)/(8*a0*c0-2*b0^2))