4.34.7 a1(a+bx)y(x)+(a+bx)2y(x)+a2y(x)=0

ODE
a1(a+bx)y(x)+(a+bx)2y(x)+a2y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0325461 (sec), leaf count = 95

{{y(x)(a+bx)a2a122a1b4a2+b2a2+a1b2b(c2(a+bx)a2a122a1b4a2+b2a2b+c1)}}

Maple
cpu = 0.024 (sec), leaf count = 77

{y(x)=_C1(x+ab)12b(a1+b+a122a1b+b24a2)+_C2(x+ab)12b(a1b+a122a1b+b24a2)} Mathematica raw input

DSolve[a2*y[x] + a1*(a + b*x)*y'[x] + (a + b*x)^2*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (C[1] + (a + b*x)^((Sqrt[a2]*Sqrt[(a1^2 - 4*a2 - 2*a1*b + b^2)/a2])/b)
*C[2])/(a + b*x)^((a1 - b + Sqrt[a2]*Sqrt[(a1^2 - 4*a2 - 2*a1*b + b^2)/a2])/(2*b
))}}

Maple raw input

dsolve((b*x+a)^2*diff(diff(y(x),x),x)+a1*(b*x+a)*diff(y(x),x)+a2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*(x+a/b)^(1/2*(-a1+b+(a1^2-2*a1*b+b^2-4*a2)^(1/2))/b)+_C2*(x+a/b)^(-1/
2*(a1-b+(a1^2-2*a1*b+b^2-4*a2)^(1/2))/b)