ODE
\[ \text {a1} (a+b x) y'(x)+(a+b x)^2 y''(x)+\text {a2} y(x)=0 \] ODE Classification
[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0325461 (sec), leaf count = 95
\[\left \{\left \{y(x)\to (a+b x)^{-\frac {\sqrt {\text {a2}} \sqrt {\frac {\text {a1}^2-2 \text {a1} b-4 \text {a2}+b^2}{\text {a2}}}+\text {a1}-b}{2 b}} \left (c_2 (a+b x)^{\frac {\sqrt {\text {a2}} \sqrt {\frac {\text {a1}^2-2 \text {a1} b-4 \text {a2}+b^2}{\text {a2}}}}{b}}+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.024 (sec), leaf count = 77
\[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( x+{\frac {a}{b}} \right ) ^{{\frac {1}{2\,b} \left ( -{\it a1}+b+\sqrt {{{\it a1}}^{2}-2\,{\it a1}\,b+{b}^{2}-4\,{\it a2}} \right ) }}+{\it \_C2}\, \left ( x+{\frac {a}{b}} \right ) ^{-{\frac {1}{2\,b} \left ( {\it a1}-b+\sqrt {{{\it a1}}^{2}-2\,{\it a1}\,b+{b}^{2}-4\,{\it a2}} \right ) }} \right \} \] Mathematica raw input
DSolve[a2*y[x] + a1*(a + b*x)*y'[x] + (a + b*x)^2*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[1] + (a + b*x)^((Sqrt[a2]*Sqrt[(a1^2 - 4*a2 - 2*a1*b + b^2)/a2])/b)
*C[2])/(a + b*x)^((a1 - b + Sqrt[a2]*Sqrt[(a1^2 - 4*a2 - 2*a1*b + b^2)/a2])/(2*b
))}}
Maple raw input
dsolve((b*x+a)^2*diff(diff(y(x),x),x)+a1*(b*x+a)*diff(y(x),x)+a2*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*(x+a/b)^(1/2*(-a1+b+(a1^2-2*a1*b+b^2-4*a2)^(1/2))/b)+_C2*(x+a/b)^(-1/
2*(a1-b+(a1^2-2*a1*b+b^2-4*a2)^(1/2))/b)