4.38.44 y(x)y(x)=a

ODE
y(x)y(x)=a ODE Classification

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

Book solution method
TO DO

Mathematica
cpu = 0.209895 (sec), leaf count = 111

{{y(x)exp(c1+2aerf1(i2πaec1a(c2+x)2)22a)},{y(x)exp(c1+2aerf1(i2πaec1a(c2+x)2)22a)}}

Maple
cpu = 0.389 (sec), leaf count = 54

{y(x)12aln(_a)2_C1ad_ax_C2=0,y(x)12a(_C1ln(_a))d_ax_C2=0} Mathematica raw input

DSolve[y[x]*y''[x] == a,y[x],x]

Mathematica raw output

{{y[x] -> E^(-(C[1] + 2*a*InverseErf[(-I)*Sqrt[2/Pi]*Sqrt[a*E^(C[1]/a)*(x + C[2]
)^2]]^2)/(2*a))}, {y[x] -> E^(-(C[1] + 2*a*InverseErf[I*Sqrt[2/Pi]*Sqrt[a*E^(C[1
]/a)*(x + C[2])^2]]^2)/(2*a))}}

Maple raw input

dsolve(y(x)*diff(diff(y(x),x),x) = a, y(x),'implicit')

Maple raw output

Intat(1/(2*a*ln(_a)-2*_C1*a)^(1/2),_a = y(x))-x-_C2 = 0, Intat(-1/(-2*a*(_C1-ln(
_a)))^(1/2),_a = y(x))-x-_C2 = 0