4.38.45 \(y(x) y''(x)=y'(x)^2\)

ODE
\[ y(x) y''(x)=y'(x)^2 \] ODE Classification

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.0353146 (sec), leaf count = 14

\[\left \{\left \{y(x)\to c_2 e^{c_1 x}\right \}\right \}\]

Maple
cpu = 0.015 (sec), leaf count = 14

\[ \left \{ \ln \left ( y \left ( x \right ) \right ) -{\it \_C1}\,x-{\it \_C2}=0 \right \} \] Mathematica raw input

DSolve[y[x]*y''[x] == y'[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> E^(x*C[1])*C[2]}}

Maple raw input

dsolve(y(x)*diff(diff(y(x),x),x) = diff(y(x),x)^2, y(x),'implicit')

Maple raw output

ln(y(x))-_C1*x-_C2 = 0