4.40.9 2y(x)y(x)=y(x)2(y(x)2+1)

ODE
2y(x)y(x)=y(x)2(y(x)2+1) ODE Classification

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

Book solution method
TO DO

Mathematica
cpu = 0.908026 (sec), leaf count = 173

{{y(x)InverseFunction[iec1(#1#1e2c11ec1log(#1e2c1+ec1#1e2c11))&][c2+x]},{y(x)InverseFunction[iec1(#1#1e2c11ec1log(#1e2c1+ec1#1e2c11))&][c2+x]}}

Maple
cpu = 0.078 (sec), leaf count = 87

{_C12arctan(1(y(x)_C12)1y(x)(_C1y(x)))y(x)(_C1y(x))x_C2=0,_C12arctan(1(y(x)_C12)1y(x)(_C1y(x)))+y(x)(_C1y(x))x_C2=0} Mathematica raw input

DSolve[2*y[x]*y''[x] == y'[x]^2*(1 + y'[x]^2),y[x],x]

Mathematica raw output

{{y[x] -> InverseFunction[((-I)*(-(Log[E^(2*C[1])*Sqrt[#1] + E^C[1]*Sqrt[-1 + E^
(2*C[1])*#1]]/E^C[1]) + Sqrt[#1]*Sqrt[-1 + E^(2*C[1])*#1]))/E^C[1] & ][x + C[2]]
}, {y[x] -> InverseFunction[(I*(-(Log[E^(2*C[1])*Sqrt[#1] + E^C[1]*Sqrt[-1 + E^(
2*C[1])*#1]]/E^C[1]) + Sqrt[#1]*Sqrt[-1 + E^(2*C[1])*#1]))/E^C[1] & ][x + C[2]]}
}

Maple raw input

dsolve(2*y(x)*diff(diff(y(x),x),x) = diff(y(x),x)^2*(1+diff(y(x),x)^2), y(x),'implicit')

Maple raw output

-1/2*_C1*arctan((y(x)-1/2*_C1)/(y(x)*(_C1-y(x)))^(1/2))-(y(x)*(_C1-y(x)))^(1/2)-
x-_C2 = 0, 1/2*_C1*arctan((y(x)-1/2*_C1)/(y(x)*(_C1-y(x)))^(1/2))+(y(x)*(_C1-y(x
)))^(1/2)-x-_C2 = 0