[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.908026 (sec), leaf count = 173
Maple ✓
cpu = 0.078 (sec), leaf count = 87
DSolve[2*y[x]*y''[x] == y'[x]^2*(1 + y'[x]^2),y[x],x]
Mathematica raw output
{{y[x] -> InverseFunction[((-I)*(-(Log[E^(2*C[1])*Sqrt[#1] + E^C[1]*Sqrt[-1 + E^
(2*C[1])*#1]]/E^C[1]) + Sqrt[#1]*Sqrt[-1 + E^(2*C[1])*#1]))/E^C[1] & ][x + C[2]]
}, {y[x] -> InverseFunction[(I*(-(Log[E^(2*C[1])*Sqrt[#1] + E^C[1]*Sqrt[-1 + E^(
2*C[1])*#1]]/E^C[1]) + Sqrt[#1]*Sqrt[-1 + E^(2*C[1])*#1]))/E^C[1] & ][x + C[2]]}
}
Maple raw input
dsolve(2*y(x)*diff(diff(y(x),x),x) = diff(y(x),x)^2*(1+diff(y(x),x)^2), y(x),'implicit')
Maple raw output
-1/2*_C1*arctan((y(x)-1/2*_C1)/(y(x)*(_C1-y(x)))^(1/2))-(y(x)*(_C1-y(x)))^(1/2)-
x-_C2 = 0, 1/2*_C1*arctan((y(x)-1/2*_C1)/(y(x)*(_C1-y(x)))^(1/2))+(y(x)*(_C1-y(x
)))^(1/2)-x-_C2 = 0