4.40.10 \(3 y(x) y''(x)=2 y'(x)^2+36 y(x)^2\)

ODE
\[ 3 y(x) y''(x)=2 y'(x)^2+36 y(x)^2 \] ODE Classification

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

Book solution method
TO DO

Mathematica
cpu = 0.0720055 (sec), leaf count = 27

\[\left \{\left \{y(x)\to c_2 e^{-6 x} \left (e^{12 c_1}+e^{4 x}\right ){}^3\right \}\right \}\]

Maple
cpu = 0.04 (sec), leaf count = 22

\[ \left \{ -{{\rm e}^{4\,x}}{\it \_C1}-12\,{{\rm e}^{2\,x}}\sqrt [3]{y \left ( x \right ) }+{\it \_C2}=0 \right \} \] Mathematica raw input

DSolve[3*y[x]*y''[x] == 36*y[x]^2 + 2*y'[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> ((E^(4*x) + E^(12*C[1]))^3*C[2])/E^(6*x)}}

Maple raw input

dsolve(3*y(x)*diff(diff(y(x),x),x) = 2*diff(y(x),x)^2+36*y(x)^2, y(x),'implicit')

Maple raw output

-exp(4*x)*_C1-12*exp(2*x)*y(x)^(1/3)+_C2 = 0