4.42.19 3x2y(x)2+4y(x)22(3xy(x)+y(x))y(x)=0

ODE
3x2y(x)2+4y(x)22(3xy(x)+y(x))y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.00891545 (sec), leaf count = 24

{{y(x)c12x2c2+c1x+c2}}

Maple
cpu = 0.241 (sec), leaf count = 41

{32ln(y(x)x)ln(x)_C1=0,y(x)=_C12x2_C2+_C1x+_C2} Mathematica raw input

DSolve[4*y'[x]^2 - 2*(y[x] + 3*x*y'[x])*y''[x] + 3*x^2*y''[x]^2 == 0,y[x],x]

Mathematica raw output

{{y[x] -> x*C[1] + (x^2*C[1]^2)/C[2] + C[2]}}

Maple raw input

dsolve(3*x^2*diff(diff(y(x),x),x)^2-2*(3*x*diff(y(x),x)+y(x))*diff(diff(y(x),x),x)+4*diff(y(x),x)^2 = 0, y(x),'implicit')

Maple raw output

1/2*3^(1/2)*ln(y(x)/x)-ln(x)-_C1 = 0, y(x) = _C1^2/_C2*x^2+_C1*x+_C2