4.42.20 (29x)x2y(x)2+6y(x)y(x)6(16x)xy(x)y(x)=36xy(x)2

ODE
(29x)x2y(x)2+6y(x)y(x)6(16x)xy(x)y(x)=36xy(x)2 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0301113 (sec), leaf count = 24

{{y(x)c12x3c2+c1x+c2}}

Maple
cpu = 0.516 (sec), leaf count = 311

{_C1x((9x1)9+99x22x)299((9x1)9+9x(9x2))59184x1e29x22x+162x(9x2)11(162(12+5x2)1x(9x2)+1)116x2+8x1x(9x2)+y(x)=0,_C154x4((9x1)9+99x22x)299((9x1)9+99x22x)59181(45+16(x15)19x22x)1(4x1)29x22x4x1e4+1629x22x+y(x)=0,y(x)=_C2x3+_C1x+_C12_C2} Mathematica raw input

DSolve[6*y[x]*y''[x] - 6*(1 - 6*x)*x*y'[x]*y''[x] + (2 - 9*x)*x^2*y''[x]^2 == 36*x*y'[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> x*C[1] + (x^3*C[1]^2)/C[2] + C[2]}}

Maple raw input

dsolve(x^2*(2-9*x)*diff(diff(y(x),x),x)^2-6*x*(1-6*x)*diff(y(x),x)*diff(diff(y(x),x),x)+6*y(x)*diff(diff(y(x),x),x) = 36*x*diff(y(x),x)^2, y(x),'implicit')

Maple raw output

1/4*_C1*((9*x-1)*9^(1/2)+9*(9*x^2-2*x)^(1/2))^(-2/9*9^(1/2))*((9*x-1)*9^(1/2)+9*
(9*x^2-2*x)^(1/2))^(-5/18*9^(1/2))*5^(1/2)*4^(1/2)*(1/(-(4*x-1)^2/(9*x^2-2*x))^(
1/2)*(4/5+16^(1/2)*(x-1/5)/(9*x^2-2*x)^(1/2)))^(1/2)*x*(4*x-1)^(1/2)*exp(-1/2*(9
*x^2-2*x)^(1/2)*(-4+16^(1/2)))+y(x) = 0, _C1*((9*x-1)*9^(1/2)+9*(9*x^2-2*x)^(1/2
))^(2/9*9^(1/2))*((9*x-1)*9^(1/2)+9*(x*(9*x-2))^(1/2))^(5/18*9^(1/2))/((1/2*(-1/
2+5/2*x)*16^(1/2)/(x*(9*x-2))^(1/2)+1)/((-16*x^2+8*x-1)/x/(9*x-2))^(1/2))^(1/2)*
x*(4*x-1)^(1/2)*exp(-2*(9*x^2-2*x)^(1/2)+1/2*16^(1/2)*(x*(9*x-2))^(1/2))+y(x) = 
0, y(x) = _C2*x^3+_C1*x+_C1^2/_C2