[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0301113 (sec), leaf count = 24
Maple ✓
cpu = 0.516 (sec), leaf count = 311
DSolve[6*y[x]*y''[x] - 6*(1 - 6*x)*x*y'[x]*y''[x] + (2 - 9*x)*x^2*y''[x]^2 == 36*x*y'[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> x*C[1] + (x^3*C[1]^2)/C[2] + C[2]}}
Maple raw input
dsolve(x^2*(2-9*x)*diff(diff(y(x),x),x)^2-6*x*(1-6*x)*diff(y(x),x)*diff(diff(y(x),x),x)+6*y(x)*diff(diff(y(x),x),x) = 36*x*diff(y(x),x)^2, y(x),'implicit')
Maple raw output
1/4*_C1*((9*x-1)*9^(1/2)+9*(9*x^2-2*x)^(1/2))^(-2/9*9^(1/2))*((9*x-1)*9^(1/2)+9*
(9*x^2-2*x)^(1/2))^(-5/18*9^(1/2))*5^(1/2)*4^(1/2)*(1/(-(4*x-1)^2/(9*x^2-2*x))^(
1/2)*(4/5+16^(1/2)*(x-1/5)/(9*x^2-2*x)^(1/2)))^(1/2)*x*(4*x-1)^(1/2)*exp(-1/2*(9
*x^2-2*x)^(1/2)*(-4+16^(1/2)))+y(x) = 0, _C1*((9*x-1)*9^(1/2)+9*(9*x^2-2*x)^(1/2
))^(2/9*9^(1/2))*((9*x-1)*9^(1/2)+9*(x*(9*x-2))^(1/2))^(5/18*9^(1/2))/((1/2*(-1/
2+5/2*x)*16^(1/2)/(x*(9*x-2))^(1/2)+1)/((-16*x^2+8*x-1)/x/(9*x-2))^(1/2))^(1/2)*
x*(4*x-1)^(1/2)*exp(-2*(9*x^2-2*x)^(1/2)+1/2*16^(1/2)*(x*(9*x-2))^(1/2))+y(x) =
0, y(x) = _C2*x^3+_C1*x+_C1^2/_C2