ODE
\[ y'''(x)+y''(x)+4 y'(x)+4 y(x)=0 \] ODE Classification
[[_3rd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00994133 (sec), leaf count = 28
\[\left \{\left \{y(x)\to c_3 e^{-x}+c_2 \sin (2 x)+c_1 \cos (2 x)\right \}\right \}\]
Maple ✓
cpu = 0.007 (sec), leaf count = 23
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-x}}+{\it \_C2}\,\sin \left ( 2\,x \right ) +{\it \_C3}\,\cos \left ( 2\,x \right ) \right \} \] Mathematica raw input
DSolve[4*y[x] + 4*y'[x] + y''[x] + y'''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[3]/E^x + C[1]*Cos[2*x] + C[2]*Sin[2*x]}}
Maple raw input
dsolve(diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x)+4*diff(y(x),x)+4*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(-x)+_C2*sin(2*x)+_C3*cos(2*x)