4.43.15 y(x)+y(x)+2y(x)+4y(x)=sin(2x)

ODE
y(x)+y(x)+2y(x)+4y(x)=sin(2x) ODE Classification

[[_3rd_order, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.291977 (sec), leaf count = 1185

{{y(x)exRoot[#13+#12+2#1+4&,1]c1+exRoot[#13+#12+2#1+4&,2]c2+exRoot[#13+#12+2#1+4&,3]c3+8(Root[#13+#12+2#1+4&,2]Root[#13+#12+2#1+4&,3](252+(70+26Root[#13+#12+2#1+4&,1]+Root[#13+#12+2#1+4&,1]2)Root[#13+#12+2#1+4&,3])+2(166(64+118Root[#13+#12+2#1+4&,1]+3Root[#13+#12+2#1+4&,1]2)Root[#13+#12+2#1+4&,3]+(8415Root[#13+#12+2#1+4&,1]+5Root[#13+#12+2#1+4&,1]2)Root[#13+#12+2#1+4&,3]2)+2Root[#13+#12+2#1+4&,2]2(263Root[#13+#12+2#1+4&,3]+18Root[#13+#12+2#1+4&,3]2+Root[#13+#12+2#1+4&,1](10+25Root[#13+#12+2#1+4&,3]+8Root[#13+#12+2#1+4&,3]2)))cos(2x)+(Root[#13+#12+2#1+4&,2](128+24Root[#13+#12+2#1+4&,3]5(2450Root[#13+#12+2#1+4&,1]+3Root[#13+#12+2#1+4&,1]2)Root[#13+#12+2#1+4&,3]2)+4(24+(11630Root[#13+#12+2#1+4&,1]+23Root[#13+#12+2#1+4&,1]2)Root[#13+#12+2#1+4&,3]+(36+6Root[#13+#12+2#1+4&,1]+11Root[#13+#12+2#1+4&,1]2)Root[#13+#12+2#1+4&,3]2)+Root[#13+#12+2#1+4&,2]2(Root[#13+#12+2#1+4&,1](88+96Root[#13+#12+2#1+4&,3]+25Root[#13+#12+2#1+4&,3]2)+4(52+25Root[#13+#12+2#1+4&,3]+51Root[#13+#12+2#1+4&,3]2)))sin(2x)Root[#13+#12+2#1+4&,1]2(Root[#13+#12+2#1+4&,1]Root[#13+#12+2#1+4&,2])Root[#13+#12+2#1+4&,2](4+Root[#13+#12+2#1+4&,2]2)(Root[#13+#12+2#1+4&,1]Root[#13+#12+2#1+4&,3])(Root[#13+#12+2#1+4&,2]Root[#13+#12+2#1+4&,3])((12i)+Root[#13+#12+2#1+4&,2]+Root[#13+#12+2#1+4&,3])((1+2i)+Root[#13+#12+2#1+4&,2]+Root[#13+#12+2#1+4&,3])(2+Root[#13+#12+2#1+4&,2]2+2Root[#13+#12+2#1+4&,1]Root[#13+#12+2#1+4&,3])(4+Root[#13+#12+2#1+4&,3]2)}}

Maple
cpu = 0.714 (sec), leaf count = 1277

{y(x)=120750046+33833+(24900383+485550)(46+3383)23+2801250+(45816383+723262)(46+3383)43(207500e(3249(46+3249)2/346(46+3249)2/32546+32493+50)x150cos(2346+33833x((398346)46+3383325346)75)(46+33833+(338325+11750)(46+3383)2/3+272+(138383625+43571250)(46+3383)4/3)383sin(2x)4150((25346+338339(463983)(46+3383)2/39)cos(2346+33833x((398346)46+3383325346)75)+((249463)(46+3249)2/32546+324933)sin(2346+33833x((398346)46+3383325346)75))e(3249(46+3249)2/346(46+3249)2/32546+32493+50)x150dx207500e(3249(46+3249)2/346(46+3249)2/32546+32493+50)x150sin(2346+33833x((398346)46+3383325346)75)(46+33833+(338325+11750)(46+3383)2/3+272+(138383625+43571250)(46+3383)4/3)83sin(2x)498e(3249(46+3249)2/346(46+3249)2/32546+32493+50)x150(((924925+13825)(46+3249)2/3+346+32493)cos(2346+33833x((398346)46+3383325346)75)+sin(2346+33833x((398346)46+3383325346)75)(346+33833(463983)(46+3383)2/325))dx+(3750833(cos(2x)1/6sin(2x))46+33833+(6900383cos(2x)525383sin(2x)112050cos(2x)+18675sin(2x))(46+3383)234357sin(2x)(383687244357)(46+3383)4/3)ex(3383(46+3383)2/33249(46+3249)2/346(46+3383)2/3+46(46+3249)2/32546+33833+2546+32493)75+207500(_C2e(3249(46+3249)2/346(46+3249)2/32546+32493+50)x150cos((463983)x(46+3383)2/31501/646+338333x)+_C3e(3249(46+3249)2/346(46+3249)2/32546+32493+50)x150sin((463983)x(46+3383)2/31501/646+338333x)+_C1e(3249(46+3249)2/346(46+3249)2/32546+3249325)x75)(46+33833+(338325+11750)(46+3383)2/3+272+(138383625+43571250)(46+3383)4/3))} Mathematica raw input

DSolve[4*y[x] + 2*y'[x] + y''[x] + y'''[x] == Sin[2*x],y[x],x]

Mathematica raw output

{{y[x] -> E^(x*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0])*C[1] + E^(x*Root[4 + 2*#1 
+ #1^2 + #1^3 & , 2, 0])*C[2] + E^(x*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0])*C[3]
 + (8*Cos[2*x]*(Root[4 + 2*#1 + #1^2 + #1^3 & , 2, 0]*Root[4 + 2*#1 + #1^2 + #1^
3 & , 3, 0]*(-252 + (-70 + 26*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0] + Root[4 + 2
*#1 + #1^2 + #1^3 & , 1, 0]^2)*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0]) + 2*(166 -
 (64 + 118*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0] + 3*Root[4 + 2*#1 + #1^2 + #1^3
 & , 1, 0]^2)*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0] + (-84 - 15*Root[4 + 2*#1 + 
#1^2 + #1^3 & , 1, 0] + 5*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0]^2)*Root[4 + 2*#1
 + #1^2 + #1^3 & , 3, 0]^2) + 2*Root[4 + 2*#1 + #1^2 + #1^3 & , 2, 0]^2*(-26 - 3
*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0] + 18*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0
]^2 + Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0]*(10 + 25*Root[4 + 2*#1 + #1^2 + #1^3
 & , 3, 0] + 8*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0]^2))) + (Root[4 + 2*#1 + #1^
2 + #1^3 & , 2, 0]*(128 + 24*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0] - 5*(-24 - 50
*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0] + 3*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0]
^2)*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0]^2) + 4*(24 + (116 - 30*Root[4 + 2*#1 +
 #1^2 + #1^3 & , 1, 0] + 23*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0]^2)*Root[4 + 2*
#1 + #1^2 + #1^3 & , 3, 0] + (36 + 6*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0] + 11*
Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0]^2)*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0]^2
) + Root[4 + 2*#1 + #1^2 + #1^3 & , 2, 0]^2*(Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 
0]*(-88 + 96*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0] + 25*Root[4 + 2*#1 + #1^2 + #
1^3 & , 3, 0]^2) + 4*(52 + 25*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0] + 51*Root[4 
+ 2*#1 + #1^2 + #1^3 & , 3, 0]^2)))*Sin[2*x])/(Root[4 + 2*#1 + #1^2 + #1^3 & , 1
, 0]^2*(Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0] - Root[4 + 2*#1 + #1^2 + #1^3 & , 
2, 0])*Root[4 + 2*#1 + #1^2 + #1^3 & , 2, 0]*(4 + Root[4 + 2*#1 + #1^2 + #1^3 & 
, 2, 0]^2)*(Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0] - Root[4 + 2*#1 + #1^2 + #1^3 
& , 3, 0])*(Root[4 + 2*#1 + #1^2 + #1^3 & , 2, 0] - Root[4 + 2*#1 + #1^2 + #1^3 
& , 3, 0])*((1 - 2*I) + Root[4 + 2*#1 + #1^2 + #1^3 & , 2, 0] + Root[4 + 2*#1 + 
#1^2 + #1^3 & , 3, 0])*((1 + 2*I) + Root[4 + 2*#1 + #1^2 + #1^3 & , 2, 0] + Root
[4 + 2*#1 + #1^2 + #1^3 & , 3, 0])*(-2 + Root[4 + 2*#1 + #1^2 + #1^3 & , 2, 0]^2
 + 2*Root[4 + 2*#1 + #1^2 + #1^3 & , 1, 0]*Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0]
)*(4 + Root[4 + 2*#1 + #1^2 + #1^3 & , 3, 0]^2))}}

Maple raw input

dsolve(diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x)+2*diff(y(x),x)+4*y(x) = sin(2*x), y(x),'implicit')

Maple raw output

y(x) = (-207500*exp(-1/150*(3*249^(1/2)*(46+3*249^(1/2))^(2/3)-46*(46+3*249^(1/2
))^(2/3)-25*(46+3*249^(1/2))^(1/3)+50)*x)*cos(23/75*(46+3*3^(1/2)*83^(1/2))^(1/3
)*x*((3^(1/2)-9/46*83^(1/2))*(46+3*3^(1/2)*83^(1/2))^(1/3)-25/46*3^(1/2)))*((46+
3*3^(1/2)*83^(1/2))^(1/3)+(-3/25*3^(1/2)*83^(1/2)+117/50)*(46+3*3^(1/2)*83^(1/2)
)^(2/3)+27/2+(-138/625*3^(1/2)*83^(1/2)+4357/1250)*(46+3*3^(1/2)*83^(1/2))^(4/3)
)*Int(3/4150*83^(1/2)*((25/9*3^(1/2)*(46+3*3^(1/2)*83^(1/2))^(1/3)-46/9*(3^(1/2)
-9/46*83^(1/2))*(46+3*3^(1/2)*83^(1/2))^(2/3))*cos(23/75*(46+3*3^(1/2)*83^(1/2))
^(1/3)*x*((3^(1/2)-9/46*83^(1/2))*(46+3*3^(1/2)*83^(1/2))^(1/3)-25/46*3^(1/2)))+
((249^(1/2)-46/3)*(46+3*249^(1/2))^(2/3)-25/3*(46+3*249^(1/2))^(1/3))*sin(23/75*
(46+3*3^(1/2)*83^(1/2))^(1/3)*x*((3^(1/2)-9/46*83^(1/2))*(46+3*3^(1/2)*83^(1/2))
^(1/3)-25/46*3^(1/2))))*sin(2*x)*exp(1/150*(3*249^(1/2)*(46+3*249^(1/2))^(2/3)-4
6*(46+3*249^(1/2))^(2/3)-25*(46+3*249^(1/2))^(1/3)+50)*x),x)-207500*exp(-1/150*(
3*249^(1/2)*(46+3*249^(1/2))^(2/3)-46*(46+3*249^(1/2))^(2/3)-25*(46+3*249^(1/2))
^(1/3)+50)*x)*sin(23/75*(46+3*3^(1/2)*83^(1/2))^(1/3)*x*((3^(1/2)-9/46*83^(1/2))
*(46+3*3^(1/2)*83^(1/2))^(1/3)-25/46*3^(1/2)))*((46+3*3^(1/2)*83^(1/2))^(1/3)+(-
3/25*3^(1/2)*83^(1/2)+117/50)*(46+3*3^(1/2)*83^(1/2))^(2/3)+27/2+(-138/625*3^(1/
2)*83^(1/2)+4357/1250)*(46+3*3^(1/2)*83^(1/2))^(4/3))*Int(1/498*83^(1/2)*sin(2*x
)*exp(1/150*(3*249^(1/2)*(46+3*249^(1/2))^(2/3)-46*(46+3*249^(1/2))^(2/3)-25*(46
+3*249^(1/2))^(1/3)+50)*x)*(((-9/25*249^(1/2)+138/25)*(46+3*249^(1/2))^(2/3)+3*(
46+3*249^(1/2))^(1/3))*cos(23/75*(46+3*3^(1/2)*83^(1/2))^(1/3)*x*((3^(1/2)-9/46*
83^(1/2))*(46+3*3^(1/2)*83^(1/2))^(1/3)-25/46*3^(1/2)))+sin(23/75*(46+3*3^(1/2)*
83^(1/2))^(1/3)*x*((3^(1/2)-9/46*83^(1/2))*(46+3*3^(1/2)*83^(1/2))^(1/3)-25/46*3
^(1/2)))*(3^(1/2)*(46+3*3^(1/2)*83^(1/2))^(1/3)-46/25*(3^(1/2)-9/46*83^(1/2))*(4
6+3*3^(1/2)*83^(1/2))^(2/3))),x)+(-3750*83^(1/2)*3^(1/2)*(cos(2*x)-1/6*sin(2*x))
*(46+3*3^(1/2)*83^(1/2))^(1/3)+(6900*3^(1/2)*83^(1/2)*cos(2*x)-525*3^(1/2)*83^(1
/2)*sin(2*x)-112050*cos(2*x)+18675*sin(2*x))*(46+3*3^(1/2)*83^(1/2))^(2/3)-4357*
sin(2*x)*(3^(1/2)*83^(1/2)-68724/4357)*(46+3*3^(1/2)*83^(1/2))^(4/3))*exp(-1/75*
x*(3*3^(1/2)*83^(1/2)*(46+3*3^(1/2)*83^(1/2))^(2/3)-3*249^(1/2)*(46+3*249^(1/2))
^(2/3)-46*(46+3*3^(1/2)*83^(1/2))^(2/3)+46*(46+3*249^(1/2))^(2/3)-25*(46+3*3^(1/
2)*83^(1/2))^(1/3)+25*(46+3*249^(1/2))^(1/3)))+207500*(_C2*exp(-1/150*(3*249^(1/
2)*(46+3*249^(1/2))^(2/3)-46*(46+3*249^(1/2))^(2/3)-25*(46+3*249^(1/2))^(1/3)+50
)*x)*cos(1/150*(46*3^(1/2)-9*83^(1/2))*x*(46+3*3^(1/2)*83^(1/2))^(2/3)-1/6*(46+3
*3^(1/2)*83^(1/2))^(1/3)*3^(1/2)*x)+_C3*exp(-1/150*(3*249^(1/2)*(46+3*249^(1/2))
^(2/3)-46*(46+3*249^(1/2))^(2/3)-25*(46+3*249^(1/2))^(1/3)+50)*x)*sin(1/150*(46*
3^(1/2)-9*83^(1/2))*x*(46+3*3^(1/2)*83^(1/2))^(2/3)-1/6*(46+3*3^(1/2)*83^(1/2))^
(1/3)*3^(1/2)*x)+_C1*exp(1/75*(3*249^(1/2)*(46+3*249^(1/2))^(2/3)-46*(46+3*249^(
1/2))^(2/3)-25*(46+3*249^(1/2))^(1/3)-25)*x))*((46+3*3^(1/2)*83^(1/2))^(1/3)+(-3
/25*3^(1/2)*83^(1/2)+117/50)*(46+3*3^(1/2)*83^(1/2))^(2/3)+27/2+(-138/625*3^(1/2
)*83^(1/2)+4357/1250)*(46+3*3^(1/2)*83^(1/2))^(4/3)))/(207500*(46+3*3^(1/2)*83^(
1/2))^(1/3)+(-24900*3^(1/2)*83^(1/2)+485550)*(46+3*3^(1/2)*83^(1/2))^(2/3)+28012
50+(-45816*3^(1/2)*83^(1/2)+723262)*(46+3*3^(1/2)*83^(1/2))^(4/3))