4.43.49 y(x)+y(x)(2cot(x)+csc(x))y(x)=cot(x)

ODE
y(x)+y(x)(2cot(x)+csc(x))y(x)=cot(x) ODE Classification

[[_3rd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.680945 (sec), leaf count = 56

{{y(x)c2x2cot(x2)(c2log(2(cos(x)+1))+2c1)2+c3+cot(x2)sin1(cos(x))}}

Maple
cpu = 28.87 (sec), leaf count = 276

{y(x)=_C1π(csgn(ieix(eix+1)2))3+_C1π(csgn(ieix)+csgn(i(eix+1)2))(csgn(ieix(eix+1)2))2_C1πcsgn(i(eix+1)2)csgn(ieix)csgn(ieix(eix+1)2)_C1π(csgn(i(eix+1)2))3+2_C1πcsgn(i+ieix)(csgn(i(eix+1)2))2_C1π(csgn(i+ieix))2csgn(i(eix+1)2)2i_C1(eix+1)ln(eix+1)+2i_C1ln(eix)+(ix2_C1x+_C3)eix+2iln(2)_C1ix2i_C2+2_C1x_C3eix1} Mathematica raw input

DSolve[-y'[x] + (2*Cot[x] + Csc[x])*y''[x] + y'''[x] == Cot[x],y[x],x]

Mathematica raw output

{{y[x] -> -((x*C[2])/Sqrt[2]) + C[3] + ArcSin[Cos[x]]*Cot[x/2] - (Cot[x/2]*(2*C[
1] + C[2]*Log[2*(1 + Cos[x])]))/Sqrt[2]}}

Maple raw input

dsolve(diff(diff(diff(y(x),x),x),x)+(2*cot(x)+csc(x))*diff(diff(y(x),x),x)-diff(y(x),x) = cot(x), y(x),'implicit')

Maple raw output

y(x) = (-_C1*Pi*csgn(I*exp(-I*x)*(exp(I*x)+1)^2)^3+_C1*Pi*(csgn(I*exp(-I*x))+csg
n(I*(exp(I*x)+1)^2))*csgn(I*exp(-I*x)*(exp(I*x)+1)^2)^2-_C1*Pi*csgn(I*(exp(I*x)+
1)^2)*csgn(I*exp(-I*x))*csgn(I*exp(-I*x)*(exp(I*x)+1)^2)-_C1*Pi*csgn(I*(exp(I*x)
+1)^2)^3+2*_C1*Pi*csgn(I+I*exp(I*x))*csgn(I*(exp(I*x)+1)^2)^2-_C1*Pi*csgn(I+I*ex
p(I*x))^2*csgn(I*(exp(I*x)+1)^2)-2*I*_C1*(exp(I*x)+1)*ln(exp(I*x)+1)+2*I*_C1*ln(
exp(I*x))+(-I*x-2*_C1*x+_C3)*exp(I*x)+2*I*ln(2)*_C1-I*x-2*I*_C2+2*_C1*x-_C3)/(ex
p(I*x)-1)