ODE
\[ y'''(x)-\sin (x) y''(x)-2 \cos (x) y'(x)+y(x) \sin (x)=\log (x) \] ODE Classification
[[_3rd_order, _fully, _exact, _linear]]
Book solution method
TO DO
Mathematica ✗
cpu = 599.998 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.084 (sec), leaf count = 36
\[ \left \{ y \left ( x \right ) = \left ( {\it \_C3}+\int \! \left ( 2\,{\it \_C1}\,x+{\it \_C2}+{\frac {{x}^{2}\ln \left ( x \right ) }{2}}-{\frac {3\,{x}^{2}}{4}} \right ) {{\rm e}^{\cos \left ( x \right ) }}\,{\rm d}x \right ) {{\rm e}^{-\cos \left ( x \right ) }} \right \} \] Mathematica raw input
DSolve[Sin[x]*y[x] - 2*Cos[x]*y'[x] - Sin[x]*y''[x] + y'''[x] == Log[x],y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)*sin(x)-2*diff(y(x),x)*cos(x)+y(x)*sin(x) = ln(x), y(x),'implicit')
Maple raw output
y(x) = (_C3+Int((2*_C1*x+_C2+1/2*x^2*ln(x)-3/4*x^2)*exp(cos(x)),x))*exp(-cos(x))