4.44.2 \(y'''(x)+f(x) y''(x)+f(x) y(x)+y'(x)=0\)

ODE
\[ y'''(x)+f(x) y''(x)+f(x) y(x)+y'(x)=0 \] ODE Classification

[[_3rd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0933995 (sec), leaf count = 0 , could not solve

DSolve[f[x]*y[x] + Derivative[1][y][x] + f[x]*Derivative[2][y][x] + Derivative[3][y][x] == 0, y[x], x]

Maple
cpu = 0.2 (sec), leaf count = 36

\[ \left \{ y \left ( x \right ) ={{\rm e}^{ix}} \left ( \int \!{{\rm e}^{-2\,ix}} \left ( \int \!{\it \_C3}\,{{\rm e}^{\int \!-f \left ( x \right ) +i\,{\rm d}x}}\,{\rm d}x+{\it \_C2} \right ) \,{\rm d}x+{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[f[x]*y[x] + y'[x] + f[x]*y''[x] + y'''[x] == 0,y[x],x]

Mathematica raw output

DSolve[f[x]*y[x] + Derivative[1][y][x] + f[x]*Derivative[2][y][x] + Derivative[3
][y][x] == 0, y[x], x]

Maple raw input

dsolve(diff(diff(diff(y(x),x),x),x)+f(x)*diff(diff(y(x),x),x)+diff(y(x),x)+f(x)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(I*x)*(Int(exp(-2*I*x)*(Int(_C3*exp(Int(-f(x)+I,x)),x)+_C2),x)+_C1)