ODE
\[ 4 y'''(x)-3 y'(x)+y(x)=0 \] ODE Classification
[[_3rd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.008271 (sec), leaf count = 29
\[\left \{\left \{y(x)\to e^{-x} \left (e^{3 x/2} \left (c_2 x+c_1\right )+c_3\right )\right \}\right \}\]
Maple ✓
cpu = 0.008 (sec), leaf count = 21
\[ \left \{ y \left ( x \right ) = \left ( {\it \_C3}\,x+{\it \_C2} \right ) {{\rm e}^{{\frac {x}{2}}}}+{\it \_C1}\,{{\rm e}^{-x}} \right \} \] Mathematica raw input
DSolve[y[x] - 3*y'[x] + 4*y'''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (E^((3*x)/2)*(C[1] + x*C[2]) + C[3])/E^x}}
Maple raw input
dsolve(4*diff(diff(diff(y(x),x),x),x)-3*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = (_C3*x+_C2)*exp(1/2*x)+_C1*exp(-x)