ODE
\[ (1-2 x) y'''(x)-(x+4) y''(x)-2 y'(x)=0 \] ODE Classification
[[_3rd_order, _missing_y]]
Book solution method
TO DO
Mathematica ✗
cpu = 600.603 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.117 (sec), leaf count = 45
\[ \left \{ y \left ( x \right ) ={1 \left ( {\it \_C3}+\int \!{\frac {2\,{\it \_C1}\,x+{\it \_C2}}{1-2\,x}{{\rm e}^{{\frac {x}{2}}}}\sqrt [4]{-1+2\,x}}\,{\rm d}x \right ) {{\rm e}^{-{\frac {x}{2}}}}{\frac {1}{\sqrt [4]{-1+2\,x}}}} \right \} \] Mathematica raw input
DSolve[-2*y'[x] - (4 + x)*y''[x] + (1 - 2*x)*y'''[x] == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve((1-2*x)*diff(diff(diff(y(x),x),x),x)-(4+x)*diff(diff(y(x),x),x)-2*diff(y(x),x) = 0, y(x),'implicit')
Maple raw output
y(x) = (_C3+Int((2*_C1*x+_C2)*exp(1/2*x)*(-1+2*x)^(1/4)/(1-2*x),x))*exp(-1/2*x)/
(-1+2*x)^(1/4)