[[_3rd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.553604 (sec), leaf count = 97
Maple ✓
cpu = 0.556 (sec), leaf count = 135
DSolve[a*x^2*y[x] - 6*y'[x] + x^2*y'''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (((2 + a^(1/3)*x)*C[1])/E^(a^(1/3)*x) + E^((-1)^(1/3)*a^(1/3)*x)*(2*(-
1)^(2/3) + a^(1/3)*x)*C[2] + ((-2*(-1)^(1/3) + a^(1/3)*x)*C[3])/E^((-1)^(2/3)*a^
(1/3)*x))/x}}
Maple raw input
dsolve(x^2*diff(diff(diff(y(x),x),x),x)-6*diff(y(x),x)+a*x^2*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = (-_C2*((-I-3^(1/2))*(-a^4)^(2/3)+I*a^3*x)*exp(1/2*I*(-3^(1/2)+I)*(-a^4)^(
1/3)*x/a)-_C3*((-I+3^(1/2))*(-a^4)^(2/3)+I*a^3*x)*exp(1/2*I*(3^(1/2)+I)*(-a^4)^(
1/3)*x/a)+_C1*exp((-a^4)^(1/3)/a*x)*(a^3*x+2*(-a^4)^(2/3)))/x