4.44.14 x2y(x)+ax2y(x)6y(x)=0

ODE
x2y(x)+ax2y(x)6y(x)=0 ODE Classification

[[_3rd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.553604 (sec), leaf count = 97

{{y(x)c1ea3x(a3x+2)+c2e13a3x(a3x+2(1)2/3)+c3e(1)2/3a3x(a3x213)x}}

Maple
cpu = 0.556 (sec), leaf count = 135

{y(x)=1x(_C2((i3)(a4)23+ia3x)ei2(3+i)xaa43_C3((i+3)(a4)23+ia3x)ei2(3+i)xaa43+_C1exaa43(a3x+2(a4)2/3))} Mathematica raw input

DSolve[a*x^2*y[x] - 6*y'[x] + x^2*y'''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (((2 + a^(1/3)*x)*C[1])/E^(a^(1/3)*x) + E^((-1)^(1/3)*a^(1/3)*x)*(2*(-
1)^(2/3) + a^(1/3)*x)*C[2] + ((-2*(-1)^(1/3) + a^(1/3)*x)*C[3])/E^((-1)^(2/3)*a^
(1/3)*x))/x}}

Maple raw input

dsolve(x^2*diff(diff(diff(y(x),x),x),x)-6*diff(y(x),x)+a*x^2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = (-_C2*((-I-3^(1/2))*(-a^4)^(2/3)+I*a^3*x)*exp(1/2*I*(-3^(1/2)+I)*(-a^4)^(
1/3)*x/a)-_C3*((-I+3^(1/2))*(-a^4)^(2/3)+I*a^3*x)*exp(1/2*I*(3^(1/2)+I)*(-a^4)^(
1/3)*x/a)+_C1*exp((-a^4)^(1/3)/a*x)*(a^3*x+2*(-a^4)^(2/3)))/x