4.45.3 x4y(x)+2x3y(x)+2xy(x)=10(x2+1)

ODE
x4y(x)+2x3y(x)+2xy(x)=10(x2+1) ODE Classification

[[_3rd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0605516 (sec), leaf count = 42

{{y(x)5c3+25x2+10log(x)+85x+c1xsin(log(x))+c2xcos(log(x))}}

Maple
cpu = 0.161 (sec), leaf count = 143

{y(x)=15x(((5_C2x28)cos(ln(x))+5_C3x2sin(ln(x))+5x2+5_C1+10ln(x)+6sin(ln(x)))(tan(ln(x)2))2+(20x2cos(ln(x))+40x2sin(ln(x))+12cos(ln(x))+16sin(ln(x)))tan(ln(x)2)+(8+(5_C2+40)x2)cos(ln(x))+(6+(5_C3+20)x2)sin(ln(x))+5x2+5_C1+10ln(x))(1+(tan(ln(x)2))2)1} Mathematica raw input

DSolve[2*x*y[x] + 2*x^3*y''[x] + x^4*y'''[x] == 10*(1 + x^2),y[x],x]

Mathematica raw output

{{y[x] -> x*C[2]*Cos[Log[x]] + (8 + 25*x^2 + 5*C[3] + 10*Log[x])/(5*x) + x*C[1]*
Sin[Log[x]]}}

Maple raw input

dsolve(x^4*diff(diff(diff(y(x),x),x),x)+2*x^3*diff(diff(y(x),x),x)+2*x*y(x) = 10*x^2+10, y(x),'implicit')

Maple raw output

y(x) = 1/5*(((5*_C2*x^2-8)*cos(ln(x))+5*_C3*x^2*sin(ln(x))+5*x^2+5*_C1+10*ln(x)+
6*sin(ln(x)))*tan(1/2*ln(x))^2+(-20*x^2*cos(ln(x))+40*x^2*sin(ln(x))+12*cos(ln(x
))+16*sin(ln(x)))*tan(1/2*ln(x))+(8+(5*_C2+40)*x^2)*cos(ln(x))+(-6+(5*_C3+20)*x^
2)*sin(ln(x))+5*x^2+5*_C1+10*ln(x))/(1+tan(1/2*ln(x))^2)/x