[[_3rd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0605516 (sec), leaf count = 42
Maple ✓
cpu = 0.161 (sec), leaf count = 143
DSolve[2*x*y[x] + 2*x^3*y''[x] + x^4*y'''[x] == 10*(1 + x^2),y[x],x]
Mathematica raw output
{{y[x] -> x*C[2]*Cos[Log[x]] + (8 + 25*x^2 + 5*C[3] + 10*Log[x])/(5*x) + x*C[1]*
Sin[Log[x]]}}
Maple raw input
dsolve(x^4*diff(diff(diff(y(x),x),x),x)+2*x^3*diff(diff(y(x),x),x)+2*x*y(x) = 10*x^2+10, y(x),'implicit')
Maple raw output
y(x) = 1/5*(((5*_C2*x^2-8)*cos(ln(x))+5*_C3*x^2*sin(ln(x))+5*x^2+5*_C1+10*ln(x)+
6*sin(ln(x)))*tan(1/2*ln(x))^2+(-20*x^2*cos(ln(x))+40*x^2*sin(ln(x))+12*cos(ln(x
))+16*sin(ln(x)))*tan(1/2*ln(x))+(8+(5*_C2+40)*x^2)*cos(ln(x))+(-6+(5*_C3+20)*x^
2)*sin(ln(x))+5*x^2+5*_C1+10*ln(x))/(1+tan(1/2*ln(x))^2)/x