4.45.4 x4y(x)+2x3y(x)x2y(x)+xy(x)=1

ODE
x4y(x)+2x3y(x)x2y(x)+xy(x)=1 ODE Classification

[[_3rd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0174024 (sec), leaf count = 33

{{y(x)c1x+c2x+c3xlog(x)+log(x)+14x}}

Maple
cpu = 0.021 (sec), leaf count = 30

{y(x)=4_C3x2ln(x)+4_C1x2+ln(x)+4_C2+14x} Mathematica raw input

DSolve[x*y[x] - x^2*y'[x] + 2*x^3*y''[x] + x^4*y'''[x] == 1,y[x],x]

Mathematica raw output

{{y[x] -> C[1]/x + x*C[2] + x*C[3]*Log[x] + (1 + Log[x])/(4*x)}}

Maple raw input

dsolve(x^4*diff(diff(diff(y(x),x),x),x)+2*x^3*diff(diff(y(x),x),x)-x^2*diff(y(x),x)+x*y(x) = 1, y(x),'implicit')

Maple raw output

y(x) = 1/4*(4*_C3*x^2*ln(x)+4*_C1*x^2+ln(x)+4*_C2+1)/x