4.45.5 (x2+1)x2y(x)+8x3y(x)+10x2y(x)=3x2+2x2log(x)1

ODE
(x2+1)x2y(x)+8x3y(x)+10x2y(x)=3x2+2x2log(x)1 ODE Classification

[[_3rd_order, _missing_y]]

Book solution method
TO DO

Mathematica
cpu = 0.115352 (sec), leaf count = 62

{{y(x)c3100(3c21)x3+900c2x+225c1+36x560(3x4+10x2+15)xlog(x)900(x2+1)2}}

Maple
cpu = 0.18 (sec), leaf count = 67

{y(x)=(180x5+600x3+900x)ln(x)36x5+900_C3x4+(900_C1+100)x3+1800_C3x22700_C1x225_C2+900_C3900(x2+1)2} Mathematica raw input

DSolve[10*x^2*y'[x] + 8*x^3*y''[x] + x^2*(1 + x^2)*y'''[x] == -1 + 3*x^2 + 2*x^2*Log[x],y[x],x]

Mathematica raw output

{{y[x] -> C[3] - (36*x^5 + 225*C[1] + 900*x*C[2] + 100*x^3*(-1 + 3*C[2]) - 60*x*
(15 + 10*x^2 + 3*x^4)*Log[x])/(900*(1 + x^2)^2)}}

Maple raw input

dsolve(x^2*(x^2+1)*diff(diff(diff(y(x),x),x),x)+8*x^3*diff(diff(y(x),x),x)+10*x^2*diff(y(x),x) = 2*x^2*ln(x)-1+3*x^2, y(x),'implicit')

Maple raw output

y(x) = 1/900*((180*x^5+600*x^3+900*x)*ln(x)-36*x^5+900*_C3*x^4+(-900*_C1+100)*x^
3+1800*_C3*x^2-2700*_C1*x-225*_C2+900*_C3)/(x^2+1)^2