4.45.23 y(x)+2y(x)+y(x)=24xsin(x)

ODE
y(x)+2y(x)+y(x)=24xsin(x) ODE Classification

[[_high_order, _linear, _nonhomogeneous]]

Book solution method
TO DO

Mathematica
cpu = 0.117397 (sec), leaf count = 46

{{y(x)12((2c4+9)x+2c32x3)sin(x)+(c2x+c13x2+3)cos(x)}}

Maple
cpu = 0.151 (sec), leaf count = 41

{y(x)=(2_C3x6x2+2_C1+3)cos(x)2(x3+(_C43)x_C2)sin(x)} Mathematica raw input

DSolve[y[x] + 2*y''[x] + y''''[x] == 24*x*Sin[x],y[x],x]

Mathematica raw output

{{y[x] -> (3 - 3*x^2 + C[1] + x*C[2])*Cos[x] + ((-2*x^3 + 2*C[3] + x*(9 + 2*C[4]
))*Sin[x])/2}}

Maple raw input

dsolve(diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(y(x),x),x)+y(x) = 24*x*sin(x), y(x),'implicit')

Maple raw output

y(x) = 1/2*(2*_C3*x-6*x^2+2*_C1+3)*cos(x)-(x^3+(-_C4-3)*x-_C2)*sin(x)