4.45.24 y(x)2y(x)+y(x)=ex+4

ODE
y(x)2y(x)+y(x)=ex+4 ODE Classification

[[_high_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0528111 (sec), leaf count = 55

{{y(x)116ex(e2x(4(4c41)x+16c3+2x2+3)+16(c2x+c1)+64ex)}}

Maple
cpu = 0.024 (sec), leaf count = 41

{y(x)=(16_C4x+16_C2)ex16+4+(2x2+(16_C34)x+16_C1+3)ex16} Mathematica raw input

DSolve[y[x] - 2*y''[x] + y''''[x] == 4 + E^x,y[x],x]

Mathematica raw output

{{y[x] -> (64*E^x + 16*(C[1] + x*C[2]) + E^(2*x)*(3 + 2*x^2 + 16*C[3] + 4*x*(-1 
+ 4*C[4])))/(16*E^x)}}

Maple raw input

dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(y(x),x),x)+y(x) = 4+exp(x), y(x),'implicit')

Maple raw output

y(x) = 1/16*(16*_C4*x+16*_C2)*exp(-x)+4+1/16*(2*x^2+(16*_C3-4)*x+16*_C1+3)*exp(x
)