ODE
\[ -y'''(x)+y''''(x)-3 y''(x)+5 y'(x)-2 y(x)=0 \] ODE Classification
[[_high_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00883226 (sec), leaf count = 32
\[\left \{\left \{y(x)\to e^{-2 x} \left (e^{3 x} \left (x \left (c_4 x+c_3\right )+c_2\right )+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.01 (sec), leaf count = 24
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{-2\,x}}+{{\rm e}^{x}} \left ( {\it \_C4}\,{x}^{2}+{\it \_C3}\,x+{\it \_C2} \right ) \right \} \] Mathematica raw input
DSolve[-2*y[x] + 5*y'[x] - 3*y''[x] - y'''[x] + y''''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[1] + E^(3*x)*(C[2] + x*(C[3] + x*C[4])))/E^(2*x)}}
Maple raw input
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+5*diff(y(x),x)-2*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(-2*x)+exp(x)*(_C4*x^2+_C3*x+_C2)