4.45.35 y(x)+y(x)3y(x)+5y(x)2y(x)=e3x

ODE
y(x)+y(x)3y(x)+5y(x)2y(x)=e3x ODE Classification

[[_high_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0345105 (sec), leaf count = 39

{{y(x)c1e2x+ex(x(c4x+c3)+c2)+e3x40}}

Maple
cpu = 0.018 (sec), leaf count = 33

{y(x)=e3x40+_C1ex+_C2e2x+_C3xex+_C4x2ex} Mathematica raw input

DSolve[-2*y[x] + 5*y'[x] - 3*y''[x] - y'''[x] + y''''[x] == E^(3*x),y[x],x]

Mathematica raw output

{{y[x] -> E^(3*x)/40 + C[1]/E^(2*x) + E^x*(C[2] + x*(C[3] + x*C[4]))}}

Maple raw input

dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+5*diff(y(x),x)-2*y(x) = exp(3*x), y(x),'implicit')

Maple raw output

y(x) = 1/40*exp(3*x)+_C1*exp(x)+_C2*exp(-2*x)+_C3*x*exp(x)+_C4*x^2*exp(x)