ODE
\[ -2 y'''(x)+y''''(x)+y(x)^2=x^3 \] ODE Classification
[NONE]
Book solution method
TO DO
Mathematica ✗
cpu = 0.031278 (sec), leaf count = 0 , could not solve
DSolve[y[x]^2 - 2*Derivative[3][y][x] + Derivative[4][y][x] == x^3, y[x], x]
Maple ✗
cpu = 0.495 (sec), leaf count = 0 , could not solve
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)+y(x)^2 = x^3, y(x),'implicit')
Mathematica raw input
DSolve[y[x]^2 - 2*y'''[x] + y''''[x] == x^3,y[x],x]
Mathematica raw output
DSolve[y[x]^2 - 2*Derivative[3][y][x] + Derivative[4][y][x] == x^3, y[x], x]
Maple raw input
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)+y(x)^2 = x^3, y(x),'implicit')
Maple raw output
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)+y(x)^
2 = x^3, y(x),'implicit')