[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✗
cpu = 0.024828 (sec), leaf count = 0 , could not solve
DSolve[y[x]^2 - 2*Derivative[3][y][x] + Derivative[4][y][x] == 0, y[x], x]
Maple ✓
cpu = 0.904 (sec), leaf count = 91
DSolve[y[x]^2 - 2*y'''[x] + y''''[x] == 0,y[x],x]
Mathematica raw output
DSolve[y[x]^2 - 2*Derivative[3][y][x] + Derivative[4][y][x] == 0, y[x], x]
Maple raw input
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(diff(y(x),x),x),x)+y(x)^2 = 0, y(x),'implicit')
Maple raw output
y(x) = ODESolStruc(_a,[{diff(diff(diff(_b(_a),_a),_a),_a)*_b(_a)^3+4*(diff(_b(_a
),_a)-1/2)*_b(_a)^2*diff(diff(_b(_a),_a),_a)+diff(_b(_a),_a)^3*_b(_a)-2*diff(_b(
_a),_a)^2*_b(_a)+_a^2 = 0}, {_a = y(x), _b(_a) = diff(y(x),x)}, {x = Int(1/_b(_a
),_a)+_C1, y(x) = _a}])