ODE
\[ 2 y'''(x)+y''''(x)-3 y''(x)-4 y'(x)+4 y(x)=0 \] ODE Classification
[[_high_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00909112 (sec), leaf count = 35
\[\left \{\left \{y(x)\to e^{-2 x} \left (c_3 e^{3 x}+x \left (c_4 e^{3 x}+c_2\right )+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.008 (sec), leaf count = 23
\[ \left \{ y \left ( x \right ) = \left ( {\it \_C4}\,x+{\it \_C3} \right ) {{\rm e}^{-2\,x}}+{{\rm e}^{x}} \left ( {\it \_C2}\,x+{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[4*y[x] - 4*y'[x] - 3*y''[x] + 2*y'''[x] + y''''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (C[1] + E^(3*x)*C[3] + x*(C[2] + E^(3*x)*C[4]))/E^(2*x)}}
Maple raw input
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)+2*diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = (_C4*x+_C3)*exp(-2*x)+exp(x)*(_C2*x+_C1)