[[_high_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0394146 (sec), leaf count = 143
Maple ✓
cpu = 0.035 (sec), leaf count = 172
DSolve[-y'[x] + y''[x] - 3*y'''[x] + y''''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> C[4] + (E^(x*Root[-1 + #1 - 3*#1^2 + #1^3 & , 1, 0])*C[1])/Root[-1 + #
1 - 3*#1^2 + #1^3 & , 1, 0] + (E^(x*Root[-1 + #1 - 3*#1^2 + #1^3 & , 2, 0])*C[2]
)/Root[-1 + #1 - 3*#1^2 + #1^3 & , 2, 0] + (E^(x*Root[-1 + #1 - 3*#1^2 + #1^3 &
, 3, 0])*C[3])/Root[-1 + #1 - 3*#1^2 + #1^3 & , 3, 0]}}
Maple raw input
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-3*diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x)-diff(y(x),x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1+_C2*exp(1/3*((27+3*57^(1/2))^(2/3)+3*(27+3*57^(1/2))^(1/3)+6)/(27+3*5
7^(1/2))^(1/3)*x)-_C3*exp(-1/6/(27+3*57^(1/2))^(1/3)*((27+3*57^(1/2))^(2/3)-6*(2
7+3*57^(1/2))^(1/3)+6)*x)*sin(1/6/(27+3*57^(1/2))^(1/3)*3^(1/2)*((27+3*57^(1/2))
^(2/3)-6)*x)+_C4*exp(-1/6/(27+3*57^(1/2))^(1/3)*((27+3*57^(1/2))^(2/3)-6*(27+3*5
7^(1/2))^(1/3)+6)*x)*cos(1/6/(27+3*57^(1/2))^(1/3)*3^(1/2)*((27+3*57^(1/2))^(2/3
)-6)*x)