ODE
\[ -4 y'''(x)+y''''(x)+6 y''(x)-4 y'(x)+y(x)=0 \] ODE Classification
[[_high_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00887705 (sec), leaf count = 26
\[\left \{\left \{y(x)\to e^x \left (x \left (x \left (c_4 x+c_3\right )+c_2\right )+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.006 (sec), leaf count = 22
\[ \left \{ y \left ( x \right ) ={{\rm e}^{x}} \left ( {\it \_C4}\,{x}^{3}+{\it \_C3}\,{x}^{2}+{\it \_C2}\,x+{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[y[x] - 4*y'[x] + 6*y''[x] - 4*y'''[x] + y''''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> E^x*(C[1] + x*(C[2] + x*(C[3] + x*C[4])))}}
Maple raw input
dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x)+6*diff(diff(y(x),x),x)-4*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = exp(x)*(_C4*x^3+_C3*x^2+_C2*x+_C1)