4.46.18 \(-y'''(x)+y'''''(x)-2 y''(x)+2 y'(x)=0\)

ODE
\[ -y'''(x)+y'''''(x)-2 y''(x)+2 y'(x)=0 \] ODE Classification

[[_high_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.136413 (sec), leaf count = 53

\[\left \{\left \{y(x)\to \frac {1}{2} e^{-x} \left (2 e^{2 x} \left (c_4 (x-1)+c_3\right )+\left (c_2-c_1\right ) \sin (x)-\left (c_1+c_2\right ) \cos (x)\right )+c_5\right \}\right \}\]

Maple
cpu = 0.009 (sec), leaf count = 28

\[ \left \{ y \left ( x \right ) = \left ( {\it \_C4}\,\sin \left ( x \right ) +{\it \_C5}\,\cos \left ( x \right ) \right ) {{\rm e}^{-x}}+ \left ( {\it \_C3}\,x+{\it \_C2} \right ) {{\rm e}^{x}}+{\it \_C1} \right \} \] Mathematica raw input

DSolve[2*y'[x] - 2*y''[x] - y'''[x] + y'''''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[5] + (2*E^(2*x)*(C[3] + (-1 + x)*C[4]) - (C[1] + C[2])*Cos[x] + (-C[
1] + C[2])*Sin[x])/(2*E^x)}}

Maple raw input

dsolve(diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x)+2*diff(y(x),x) = 0, y(x),'implicit')

Maple raw output

y(x) = (_C4*sin(x)+_C5*cos(x))*exp(-x)+(_C3*x+_C2)*exp(x)+_C1