4.46.19 \(2 y'''(x)+y'''''(x)+y'(x)=0\)

ODE
\[ 2 y'''(x)+y'''''(x)+y'(x)=0 \] ODE Classification

[[_high_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.031045 (sec), leaf count = 35

\[\left \{\left \{y(x)\to \left (c_2 x+c_1+c_4\right ) \sin (x)+\left (-c_4 x+c_2-c_3\right ) \cos (x)+c_5\right \}\right \}\]

Maple
cpu = 0.007 (sec), leaf count = 22

\[ \left \{ y \left ( x \right ) = \left ( {\it \_C5}\,x+{\it \_C3} \right ) \cos \left ( x \right ) + \left ( {\it \_C4}\,x+{\it \_C2} \right ) \sin \left ( x \right ) +{\it \_C1} \right \} \] Mathematica raw input

DSolve[y'[x] + 2*y'''[x] + y'''''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> C[5] + (C[2] - C[3] - x*C[4])*Cos[x] + (C[1] + x*C[2] + C[4])*Sin[x]}}

Maple raw input

dsolve(diff(diff(diff(diff(diff(y(x),x),x),x),x),x)+2*diff(diff(diff(y(x),x),x),x)+diff(y(x),x) = 0, y(x),'implicit')

Maple raw output

y(x) = (_C5*x+_C3)*cos(x)+(_C4*x+_C2)*sin(x)+_C1