4.5.29 (x+1)y(x)=y(x)(1xy(x)3)

ODE
(x+1)y(x)=y(x)(1xy(x)3) ODE Classification

[_rational, _Bernoulli]

Book solution method
The Bernoulli ODE

Mathematica
cpu = 0.0139653 (sec), leaf count = 119

{{y(x)(2)2/3(x+1)4c13x48x36x23},{y(x)22/3(x+1)4c13x48x36x23},{y(x)1322/3(x+1)4c13x48x36x23}}

Maple
cpu = 0.007 (sec), leaf count = 34

{(y(x))3+3x48x36x24_C14(1+x)3=0} Mathematica raw input

DSolve[(1 + x)*y'[x] == y[x]*(1 - x*y[x]^3),y[x],x]

Mathematica raw output

{{y[x] -> -(((-2)^(2/3)*(1 + x))/(-6*x^2 - 8*x^3 - 3*x^4 - 4*C[1])^(1/3))}, {y[x
] -> -((2^(2/3)*(1 + x))/(-6*x^2 - 8*x^3 - 3*x^4 - 4*C[1])^(1/3))}, {y[x] -> ((-
1)^(1/3)*2^(2/3)*(1 + x))/(-6*x^2 - 8*x^3 - 3*x^4 - 4*C[1])^(1/3)}}

Maple raw input

dsolve((1+x)*diff(y(x),x) = (1-x*y(x)^3)*y(x), y(x),'implicit')

Maple raw output

1/y(x)^3+1/4*(-3*x^4-8*x^3-6*x^2-4*_C1)/(1+x)^3 = 0