[[_1st_order, _with_linear_symmetries]]
Book solution method
Change of Variable, new dependent variable
Mathematica ✓
cpu = 0.185196 (sec), leaf count = 57
Maple ✓
cpu = 0.097 (sec), leaf count = 81
DSolve[(1 + x)*y'[x] == 1 + y[x] + (1 + x)*Sqrt[1 + y[x]],y[x],x]
Mathematica raw output
Solve[C[1] + Log[1 + x] == Log[-(x*(2 + x)) + y[x]] + (2*ArcTan[(1 + x)/Sqrt[-1
- y[x]]]*Sqrt[1 + y[x]])/Sqrt[-1 - y[x]], y[x]]
Maple raw input
dsolve((1+x)*diff(y(x),x) = 1+y(x)+(1+x)*(1+y(x))^(1/2), y(x),'implicit')
Maple raw output
((-y(x)*_C1+1+_C1*x^2+(2*_C1+1)*x)*(1+y(x))^(1/2)-(1+x)*(-y(x)*_C1-1+_C1*x^2+(2*
_C1-1)*x))/(-(1+y(x))^(1/2)+x+1)/(x^2+2*x-y(x)) = 0