4.5.30 (x+1)y(x)=(x+1)y(x)+1+y(x)+1

ODE
(x+1)y(x)=(x+1)y(x)+1+y(x)+1 ODE Classification

[[_1st_order, _with_linear_symmetries]]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 0.185196 (sec), leaf count = 57

Solve[c1+log(x+1)=log(y(x)x(x+2))+2y(x)+1tan1(x+1y(x)1)y(x)1,y(x)]

Maple
cpu = 0.097 (sec), leaf count = 81

{1x2+2xy(x)((y(x)_C1+1+_C1x2+(2_C1+1)x)1+y(x)(1+x)(y(x)_C11+_C1x2+(2_C11)x))(1+y(x)+x+1)1=0} Mathematica raw input

DSolve[(1 + x)*y'[x] == 1 + y[x] + (1 + x)*Sqrt[1 + y[x]],y[x],x]

Mathematica raw output

Solve[C[1] + Log[1 + x] == Log[-(x*(2 + x)) + y[x]] + (2*ArcTan[(1 + x)/Sqrt[-1 
- y[x]]]*Sqrt[1 + y[x]])/Sqrt[-1 - y[x]], y[x]]

Maple raw input

dsolve((1+x)*diff(y(x),x) = 1+y(x)+(1+x)*(1+y(x))^(1/2), y(x),'implicit')

Maple raw output

((-y(x)*_C1+1+_C1*x^2+(2*_C1+1)*x)*(1+y(x))^(1/2)-(1+x)*(-y(x)*_C1-1+_C1*x^2+(2*
_C1-1)*x))/(-(1+y(x))^(1/2)+x+1)/(x^2+2*x-y(x)) = 0