4.12.27 (1x2)y(x)y(x)+2x2+xy(x)2=0

ODE
(1x2)y(x)y(x)+2x2+xy(x)2=0 ODE Classification

[_rational, _Bernoulli]

Book solution method
The Bernoulli ODE

Mathematica
cpu = 0.0318261 (sec), leaf count = 93

{{y(x)c1x2c1+(x21)log(1x)(x21)log(x+1)2x},{y(x)c1x2c1+(x21)log(1x)(x21)log(x+1)2x}}

Maple
cpu = 0.027 (sec), leaf count = 43

{(y(x))2(x21)ln(1+x)_C1x2+ln(1+x)x2+2x+_C1ln(1+x)=0} Mathematica raw input

DSolve[2*x^2 + x*y[x]^2 + (1 - x^2)*y[x]*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> -Sqrt[-2*x - C[1] + x^2*C[1] + (-1 + x^2)*Log[1 - x] - (-1 + x^2)*Log[
1 + x]]}, {y[x] -> Sqrt[-2*x - C[1] + x^2*C[1] + (-1 + x^2)*Log[1 - x] - (-1 + x
^2)*Log[1 + x]]}}

Maple raw input

dsolve((-x^2+1)*y(x)*diff(y(x),x)+2*x^2+x*y(x)^2 = 0, y(x),'implicit')

Maple raw output

y(x)^2-(x^2-1)*ln(-1+x)-_C1*x^2+ln(1+x)*x^2+2*x+_C1-ln(1+x) = 0