4.12.28 2x2y(x)y(x)=x2(2x+1)y(x)2

ODE
2x2y(x)y(x)=x2(2x+1)y(x)2 ODE Classification

[[_homogeneous, `class D`], _rational, _Bernoulli]

Book solution method
The Bernoulli ODE

Mathematica
cpu = 0.0110721 (sec), leaf count = 43

{{y(x)c1e1x+x2},{y(x)c1e1x+x2}}

Maple
cpu = 0.008 (sec), leaf count = 20

{x2ex1_C1+(y(x))2=0} Mathematica raw input

DSolve[2*x^2*y[x]*y'[x] == x^2*(1 + 2*x) - y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> -Sqrt[x^2 + E^x^(-1)*C[1]]}, {y[x] -> Sqrt[x^2 + E^x^(-1)*C[1]]}}

Maple raw input

dsolve(2*x^2*y(x)*diff(y(x),x) = x^2*(1+2*x)-y(x)^2, y(x),'implicit')

Maple raw output

-x^2-exp(1/x)*_C1+y(x)^2 = 0