4.12.35 x2(4x3y(x))y(x)=y(x)(6x23xy(x)+2y(x)2)

ODE
x2(4x3y(x))y(x)=y(x)(6x23xy(x)+2y(x)2) ODE Classification

[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class C`], _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0374147 (sec), leaf count = 42

Solve[2(log(y(x)2x2+1)+log(x))+3tan1(y(x)x)=c1+4log(y(x)x),y(x)]

Maple
cpu = 0.019 (sec), leaf count = 44

{ln(x2+(y(x))2x2)32arctan(y(x)x)+2ln(y(x)x)ln(x)_C1=0} Mathematica raw input

DSolve[x^2*(4*x - 3*y[x])*y'[x] == y[x]*(6*x^2 - 3*x*y[x] + 2*y[x]^2),y[x],x]

Mathematica raw output

Solve[3*ArcTan[y[x]/x] + 2*(Log[x] + Log[1 + y[x]^2/x^2]) == C[1] + 4*Log[y[x]/x
], y[x]]

Maple raw input

dsolve(x^2*(4*x-3*y(x))*diff(y(x),x) = (6*x^2-3*x*y(x)+2*y(x)^2)*y(x), y(x),'implicit')

Maple raw output

-ln((x^2+y(x)^2)/x^2)-3/2*arctan(y(x)/x)+2*ln(y(x)/x)-ln(x)-_C1 = 0