4.12.36 (1x3y(x))y(x)=x2y(x)2

ODE
(1x3y(x))y(x)=x2y(x)2 ODE Classification

[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 14.689 (sec), leaf count = 326

{{y(x)12c1x6+26c1x6(6c1x6+1)+13+112c1x6+26c1x6(6c1x6+1)+13+12x3},{y(x)2i(3+i)12c1x6+26c1x6(6c1x6+1)+132(1+i3)12c1x6+26c1x6(6c1x6+1)+13+48x3},{y(x)2(1+i3)12c1x6+26c1x6(6c1x6+1)+13+2i(3+i)12c1x6+26c1x6(6c1x6+1)+13+48x3}}

Maple
cpu = 0.019 (sec), leaf count = 30

{ln(x)_C1ln(2x3y(x)3)6ln(x3y(x))3=0} Mathematica raw input

DSolve[(1 - x^3*y[x])*y'[x] == x^2*y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> (1 + (1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1]*(1 + 6*x^6*C[1])])^(-1
/3) + (1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1]*(1 + 6*x^6*C[1])])^(1/3))/(2*x^
3)}, {y[x] -> (4 - (2*(1 + I*Sqrt[3]))/(1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1
]*(1 + 6*x^6*C[1])])^(1/3) + (2*I)*(I + Sqrt[3])*(1 + 12*x^6*C[1] + 2*Sqrt[6]*Sq
rt[x^6*C[1]*(1 + 6*x^6*C[1])])^(1/3))/(8*x^3)}, {y[x] -> (4 + ((2*I)*(I + Sqrt[3
]))/(1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1]*(1 + 6*x^6*C[1])])^(1/3) - 2*(1 +
 I*Sqrt[3])*(1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1]*(1 + 6*x^6*C[1])])^(1/3))
/(8*x^3)}}

Maple raw input

dsolve((1-x^3*y(x))*diff(y(x),x) = x^2*y(x)^2, y(x),'implicit')

Maple raw output

ln(x)-_C1-1/6*ln(2*x^3*y(x)-3)-1/3*ln(x^3*y(x)) = 0