[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
Book solution method
Exact equation, integrating factor
Mathematica ✓
cpu = 14.689 (sec), leaf count = 326
Maple ✓
cpu = 0.019 (sec), leaf count = 30
DSolve[(1 - x^3*y[x])*y'[x] == x^2*y[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> (1 + (1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1]*(1 + 6*x^6*C[1])])^(-1
/3) + (1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1]*(1 + 6*x^6*C[1])])^(1/3))/(2*x^
3)}, {y[x] -> (4 - (2*(1 + I*Sqrt[3]))/(1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1
]*(1 + 6*x^6*C[1])])^(1/3) + (2*I)*(I + Sqrt[3])*(1 + 12*x^6*C[1] + 2*Sqrt[6]*Sq
rt[x^6*C[1]*(1 + 6*x^6*C[1])])^(1/3))/(8*x^3)}, {y[x] -> (4 + ((2*I)*(I + Sqrt[3
]))/(1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1]*(1 + 6*x^6*C[1])])^(1/3) - 2*(1 +
I*Sqrt[3])*(1 + 12*x^6*C[1] + 2*Sqrt[6]*Sqrt[x^6*C[1]*(1 + 6*x^6*C[1])])^(1/3))
/(8*x^3)}}
Maple raw input
dsolve((1-x^3*y(x))*diff(y(x),x) = x^2*y(x)^2, y(x),'implicit')
Maple raw output
ln(x)-_C1-1/6*ln(2*x^3*y(x)-3)-1/3*ln(x^3*y(x)) = 0