4.15.1 x(2y(x)3+y(x)+x)y(x)=(xy(x))y(x)

ODE
x(2y(x)3+y(x)+x)y(x)=(xy(x))y(x) ODE Classification

[_rational]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 0.504613 (sec), leaf count = 23

Solve[c1+xy(x)=y(x)2+log(y(x))+log(x),y(x)]

Maple
cpu = 0.092 (sec), leaf count = 26

{ln(x)+xy(x)(y(x))2ln(y(x))+_C1=0} Mathematica raw input

DSolve[x*(x + y[x] + 2*y[x]^3)*y'[x] == (x - y[x])*y[x],y[x],x]

Mathematica raw output

Solve[C[1] + x/y[x] == Log[x] + Log[y[x]] + y[x]^2, y[x]]

Maple raw input

dsolve(x*(x+y(x)+2*y(x)^3)*diff(y(x),x) = (x-y(x))*y(x), y(x),'implicit')

Maple raw output

-ln(x)+x/y(x)-y(x)^2-ln(y(x))+_C1 = 0