4.15.2 (7xy(x)3y(x)+5x)y(x)y(x)4+5y(x)=0

ODE
(7xy(x)3y(x)+5x)y(x)y(x)4+5y(x)=0 ODE Classification

[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

Book solution method
Exact equation, integrating factor

Mathematica
cpu = 0.0212264 (sec), leaf count = 302

{{y(x)Root[10#17x+2#15100#14x25#12+250#1x10c1&,1]},{y(x)Root[10#17x+2#15100#14x25#12+250#1x10c1&,2]},{y(x)Root[10#17x+2#15100#14x25#12+250#1x10c1&,3]},{y(x)Root[10#17x+2#15100#14x25#12+250#1x10c1&,4]},{y(x)Root[10#17x+2#15100#14x25#12+250#1x10c1&,5]},{y(x)Root[10#17x+2#15100#14x25#12+250#1x10c1&,6]},{y(x)Root[10#17x+2#15100#14x25#12+250#1x10c1&,7]}}

Maple
cpu = 0.016 (sec), leaf count = 35

{x+2(y(x))525(y(x))210_C110y(x)((y(x))35)2=0} Mathematica raw input

DSolve[5*y[x] - y[x]^4 + (5*x - y[x] - 7*x*y[x]^3)*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x*#1^4 + 2*#1^5 + 10*x*#1^7 &
 , 1]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x*#1^4 + 2*#1^5 + 10*x
*#1^7 & , 2]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x*#1^4 + 2*#1^5
 + 10*x*#1^7 & , 3]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x*#1^4 +
 2*#1^5 + 10*x*#1^7 & , 4]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x
*#1^4 + 2*#1^5 + 10*x*#1^7 & , 5]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 
- 100*x*#1^4 + 2*#1^5 + 10*x*#1^7 & , 6]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 2
5*#1^2 - 100*x*#1^4 + 2*#1^5 + 10*x*#1^7 & , 7]}}

Maple raw input

dsolve((5*x-y(x)-7*x*y(x)^3)*diff(y(x),x)+5*y(x)-y(x)^4 = 0, y(x),'implicit')

Maple raw output

x+1/10*(2*y(x)^5-25*y(x)^2-10*_C1)/y(x)/(y(x)^3-5)^2 = 0