[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
Book solution method
Exact equation, integrating factor
Mathematica ✓
cpu = 0.0212264 (sec), leaf count = 302
Maple ✓
cpu = 0.016 (sec), leaf count = 35
DSolve[5*y[x] - y[x]^4 + (5*x - y[x] - 7*x*y[x]^3)*y'[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x*#1^4 + 2*#1^5 + 10*x*#1^7 &
, 1]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x*#1^4 + 2*#1^5 + 10*x
*#1^7 & , 2]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x*#1^4 + 2*#1^5
+ 10*x*#1^7 & , 3]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x*#1^4 +
2*#1^5 + 10*x*#1^7 & , 4]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2 - 100*x
*#1^4 + 2*#1^5 + 10*x*#1^7 & , 5]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 25*#1^2
- 100*x*#1^4 + 2*#1^5 + 10*x*#1^7 & , 6]}, {y[x] -> Root[-10*C[1] + 250*x*#1 - 2
5*#1^2 - 100*x*#1^4 + 2*#1^5 + 10*x*#1^7 & , 7]}}
Maple raw input
dsolve((5*x-y(x)-7*x*y(x)^3)*diff(y(x),x)+5*y(x)-y(x)^4 = 0, y(x),'implicit')
Maple raw output
x+1/10*(2*y(x)^5-25*y(x)^2-10*_C1)/y(x)/(y(x)^3-5)^2 = 0