4.15.28 (y(x)+x+1)y(x)+1=0

ODE
(y(x)+x+1)y(x)+1=0 ODE Classification

[[_homogeneous, `class C`], _dAlembert]

Book solution method
Change of Variable, new dependent variable

Mathematica
cpu = 0.0324476 (sec), leaf count = 39

{{y(x)2c1+x+1+c1+2},{y(x)2c1+x+1+c1+2}}

Maple
cpu = 0.024 (sec), leaf count = 19

{2x+y(x)y(x)_C1=0} Mathematica raw input

DSolve[1 + (1 + Sqrt[x + y[x]])*y'[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> 2 + C[1] - 2*Sqrt[1 + x + C[1]]}, {y[x] -> 2 + C[1] + 2*Sqrt[1 + x + C
[1]]}}

Maple raw input

dsolve((1+(x+y(x))^(1/2))*diff(y(x),x)+1 = 0, y(x),'implicit')

Maple raw output

-2*(x+y(x))^(1/2)-y(x)-_C1 = 0