4.15.29 xy(x)y(x)y(x)+x=xy(x)

ODE
xy(x)y(x)y(x)+x=xy(x) ODE Classification

[[_homogeneous, `class A`], _rational, _dAlembert]

Book solution method
Homogeneous equation

Mathematica
cpu = 0.0872606 (sec), leaf count = 60

Solve[12(2y(x)x1+3log(1y(x)x)+log(y(x)x+1))+log(x)=c1,y(x)]

Maple
cpu = 0.071 (sec), leaf count = 50

{13ln(xy(x)+x)+2x3x3xy(x)+ln(x+xy(x))2ln(x)3_C1=0} Mathematica raw input

DSolve[x - y[x] + Sqrt[x*y[x]]*y'[x] == Sqrt[x*y[x]],y[x],x]

Mathematica raw output

Solve[Log[x] + (3*Log[1 - Sqrt[y[x]/x]] + Log[1 + Sqrt[y[x]/x]] - 2/(-1 + Sqrt[y
[x]/x]))/2 == C[1], y[x]]

Maple raw input

dsolve(diff(y(x),x)*(x*y(x))^(1/2)+x-y(x) = (x*y(x))^(1/2), y(x),'implicit')

Maple raw output

1/3*ln((x*y(x))^(1/2)+x)+2*x/(3*x-3*(x*y(x))^(1/2))+ln(-x+(x*y(x))^(1/2))-2/3*ln
(x)-_C1 = 0