4.15.32 (x2+1)3/2(y(x)+y(x)2+1)y(x)=y(x)2+1

ODE
(x2+1)3/2(y(x)+y(x)2+1)y(x)=y(x)2+1 ODE Classification

[_separable]

Book solution method
Separable ODE, Neither variable missing

Mathematica
cpu = 0.108219 (sec), leaf count = 321

{{y(x)i(sinh(c1+xx2+1)+cosh(c1+xx2+1)1)2sinh(c1+xx2+1)2cosh(c1+xx2+1)+1},{y(x)i(sinh(c1+xx2+1)+cosh(c1+xx2+1)1)2sinh(c1+xx2+1)2cosh(c1+xx2+1)+1},{y(x)i(sinh(c1+xx2+1)+cosh(c1+xx2+1)+1)2sinh(c1+xx2+1)+2cosh(c1+xx2+1)+1},{y(x)i(sinh(c1+xx2+1)+cosh(c1+xx2+1)+1)2sinh(c1+xx2+1)+2cosh(c1+xx2+1)+1}}

Maple
cpu = 0.01 (sec), leaf count = 28

{x1x2+1Arcsinh(y(x))ln(1+(y(x))2)2+_C1=0} Mathematica raw input

DSolve[(1 + x^2)^(3/2)*(y[x] + Sqrt[1 + y[x]^2])*y'[x] == 1 + y[x]^2,y[x],x]

Mathematica raw output

{{y[x] -> ((-I)*(-1 + Cosh[x/Sqrt[1 + x^2] + C[1]] + Sinh[x/Sqrt[1 + x^2] + C[1]
]))/Sqrt[1 - 2*Cosh[x/Sqrt[1 + x^2] + C[1]] - 2*Sinh[x/Sqrt[1 + x^2] + C[1]]]}, 
{y[x] -> (I*(-1 + Cosh[x/Sqrt[1 + x^2] + C[1]] + Sinh[x/Sqrt[1 + x^2] + C[1]]))/
Sqrt[1 - 2*Cosh[x/Sqrt[1 + x^2] + C[1]] - 2*Sinh[x/Sqrt[1 + x^2] + C[1]]]}, {y[x
] -> ((-I)*(1 + Cosh[x/Sqrt[1 + x^2] + C[1]] + Sinh[x/Sqrt[1 + x^2] + C[1]]))/Sq
rt[1 + 2*Cosh[x/Sqrt[1 + x^2] + C[1]] + 2*Sinh[x/Sqrt[1 + x^2] + C[1]]]}, {y[x] 
-> (I*(1 + Cosh[x/Sqrt[1 + x^2] + C[1]] + Sinh[x/Sqrt[1 + x^2] + C[1]]))/Sqrt[1 
+ 2*Cosh[x/Sqrt[1 + x^2] + C[1]] + 2*Sinh[x/Sqrt[1 + x^2] + C[1]]]}}

Maple raw input

dsolve((y(x)+(1+y(x)^2)^(1/2))*(x^2+1)^(3/2)*diff(y(x),x) = 1+y(x)^2, y(x),'implicit')

Maple raw output

1/(x^2+1)^(1/2)*x-arcsinh(y(x))-1/2*ln(1+y(x)^2)+_C1 = 0