ODE
\[ \left (x^2+1\right )^{3/2} \left (y(x)+\sqrt {y(x)^2+1}\right ) y'(x)=y(x)^2+1 \] ODE Classification
[_separable]
Book solution method
Separable ODE, Neither variable missing
Mathematica ✓
cpu = 0.108219 (sec), leaf count = 321
\[\left \{\left \{y(x)\to -\frac {i \left (\sinh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+\cosh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )-1\right )}{\sqrt {-2 \sinh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )-2 \cosh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+1}}\right \},\left \{y(x)\to \frac {i \left (\sinh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+\cosh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )-1\right )}{\sqrt {-2 \sinh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )-2 \cosh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+1}}\right \},\left \{y(x)\to -\frac {i \left (\sinh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+\cosh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+1\right )}{\sqrt {2 \sinh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+2 \cosh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+1}}\right \},\left \{y(x)\to \frac {i \left (\sinh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+\cosh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+1\right )}{\sqrt {2 \sinh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+2 \cosh \left (c_1+\frac {x}{\sqrt {x^2+1}}\right )+1}}\right \}\right \}\]
Maple ✓
cpu = 0.01 (sec), leaf count = 28
\[ \left \{ {x{\frac {1}{\sqrt {{x}^{2}+1}}}}-{\it Arcsinh} \left ( y \left ( x \right ) \right ) -{\frac {\ln \left ( 1+ \left ( y \left ( x \right ) \right ) ^{2} \right ) }{2}}+{\it \_C1}=0 \right \} \] Mathematica raw input
DSolve[(1 + x^2)^(3/2)*(y[x] + Sqrt[1 + y[x]^2])*y'[x] == 1 + y[x]^2,y[x],x]
Mathematica raw output
{{y[x] -> ((-I)*(-1 + Cosh[x/Sqrt[1 + x^2] + C[1]] + Sinh[x/Sqrt[1 + x^2] + C[1]
]))/Sqrt[1 - 2*Cosh[x/Sqrt[1 + x^2] + C[1]] - 2*Sinh[x/Sqrt[1 + x^2] + C[1]]]},
{y[x] -> (I*(-1 + Cosh[x/Sqrt[1 + x^2] + C[1]] + Sinh[x/Sqrt[1 + x^2] + C[1]]))/
Sqrt[1 - 2*Cosh[x/Sqrt[1 + x^2] + C[1]] - 2*Sinh[x/Sqrt[1 + x^2] + C[1]]]}, {y[x
] -> ((-I)*(1 + Cosh[x/Sqrt[1 + x^2] + C[1]] + Sinh[x/Sqrt[1 + x^2] + C[1]]))/Sq
rt[1 + 2*Cosh[x/Sqrt[1 + x^2] + C[1]] + 2*Sinh[x/Sqrt[1 + x^2] + C[1]]]}, {y[x]
-> (I*(1 + Cosh[x/Sqrt[1 + x^2] + C[1]] + Sinh[x/Sqrt[1 + x^2] + C[1]]))/Sqrt[1
+ 2*Cosh[x/Sqrt[1 + x^2] + C[1]] + 2*Sinh[x/Sqrt[1 + x^2] + C[1]]]}}
Maple raw input
dsolve((y(x)+(1+y(x)^2)^(1/2))*(x^2+1)^(3/2)*diff(y(x),x) = 1+y(x)^2, y(x),'implicit')
Maple raw output
1/(x^2+1)^(1/2)*x-arcsinh(y(x))-1/2*ln(1+y(x)^2)+_C1 = 0